from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(600))
M = H._module
chi = DirichletCharacter(H, M([0,525,500,588]))
pari: [g,chi] = znchar(Mod(20969,216000))
χ216000(89,⋅)
χ216000(1529,⋅)
χ216000(3689,⋅)
χ216000(4409,⋅)
χ216000(6569,⋅)
χ216000(8009,⋅)
χ216000(8729,⋅)
χ216000(10169,⋅)
χ216000(10889,⋅)
χ216000(12329,⋅)
χ216000(14489,⋅)
χ216000(15209,⋅)
χ216000(17369,⋅)
χ216000(18809,⋅)
χ216000(19529,⋅)
χ216000(20969,⋅)
χ216000(21689,⋅)
χ216000(23129,⋅)
χ216000(25289,⋅)
χ216000(26009,⋅)
χ216000(28169,⋅)
χ216000(29609,⋅)
χ216000(30329,⋅)
χ216000(31769,⋅)
χ216000(32489,⋅)
χ216000(33929,⋅)
χ216000(36089,⋅)
χ216000(36809,⋅)
χ216000(38969,⋅)
χ216000(40409,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (1,e(87),e(65),e(5049))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(20969,a) |
−1 | 1 | e(6023) | e(600413) | e(6007) | e(5027) | e(200153) | e(300239) | e(600131) | e(7553) | e(20059) | e(300161) |