Properties

Label 216000.20969
Modulus $216000$
Conductor $36000$
Order $600$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(600))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,525,500,588]))
 
pari: [g,chi] = znchar(Mod(20969,216000))
 

Basic properties

Modulus: \(216000\)
Conductor: \(36000\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(600\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{36000}(31469,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.vj

\(\chi_{216000}(89,\cdot)\) \(\chi_{216000}(1529,\cdot)\) \(\chi_{216000}(3689,\cdot)\) \(\chi_{216000}(4409,\cdot)\) \(\chi_{216000}(6569,\cdot)\) \(\chi_{216000}(8009,\cdot)\) \(\chi_{216000}(8729,\cdot)\) \(\chi_{216000}(10169,\cdot)\) \(\chi_{216000}(10889,\cdot)\) \(\chi_{216000}(12329,\cdot)\) \(\chi_{216000}(14489,\cdot)\) \(\chi_{216000}(15209,\cdot)\) \(\chi_{216000}(17369,\cdot)\) \(\chi_{216000}(18809,\cdot)\) \(\chi_{216000}(19529,\cdot)\) \(\chi_{216000}(20969,\cdot)\) \(\chi_{216000}(21689,\cdot)\) \(\chi_{216000}(23129,\cdot)\) \(\chi_{216000}(25289,\cdot)\) \(\chi_{216000}(26009,\cdot)\) \(\chi_{216000}(28169,\cdot)\) \(\chi_{216000}(29609,\cdot)\) \(\chi_{216000}(30329,\cdot)\) \(\chi_{216000}(31769,\cdot)\) \(\chi_{216000}(32489,\cdot)\) \(\chi_{216000}(33929,\cdot)\) \(\chi_{216000}(36089,\cdot)\) \(\chi_{216000}(36809,\cdot)\) \(\chi_{216000}(38969,\cdot)\) \(\chi_{216000}(40409,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{600})$
Fixed field: Number field defined by a degree 600 polynomial (not computed)

Values on generators

\((114751,202501,136001,29377)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{49}{50}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 216000 }(20969, a) \) \(-1\)\(1\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{413}{600}\right)\)\(e\left(\frac{7}{600}\right)\)\(e\left(\frac{27}{50}\right)\)\(e\left(\frac{153}{200}\right)\)\(e\left(\frac{239}{300}\right)\)\(e\left(\frac{131}{600}\right)\)\(e\left(\frac{53}{75}\right)\)\(e\left(\frac{59}{200}\right)\)\(e\left(\frac{161}{300}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 216000 }(20969,a) \;\) at \(\;a = \) e.g. 2