Properties

Label 216000.20969
Modulus 216000216000
Conductor 3600036000
Order 600600
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(600))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,525,500,588]))
 
pari: [g,chi] = znchar(Mod(20969,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 3600036000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 600600
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ36000(31469,)\chi_{36000}(31469,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.vj

χ216000(89,)\chi_{216000}(89,\cdot) χ216000(1529,)\chi_{216000}(1529,\cdot) χ216000(3689,)\chi_{216000}(3689,\cdot) χ216000(4409,)\chi_{216000}(4409,\cdot) χ216000(6569,)\chi_{216000}(6569,\cdot) χ216000(8009,)\chi_{216000}(8009,\cdot) χ216000(8729,)\chi_{216000}(8729,\cdot) χ216000(10169,)\chi_{216000}(10169,\cdot) χ216000(10889,)\chi_{216000}(10889,\cdot) χ216000(12329,)\chi_{216000}(12329,\cdot) χ216000(14489,)\chi_{216000}(14489,\cdot) χ216000(15209,)\chi_{216000}(15209,\cdot) χ216000(17369,)\chi_{216000}(17369,\cdot) χ216000(18809,)\chi_{216000}(18809,\cdot) χ216000(19529,)\chi_{216000}(19529,\cdot) χ216000(20969,)\chi_{216000}(20969,\cdot) χ216000(21689,)\chi_{216000}(21689,\cdot) χ216000(23129,)\chi_{216000}(23129,\cdot) χ216000(25289,)\chi_{216000}(25289,\cdot) χ216000(26009,)\chi_{216000}(26009,\cdot) χ216000(28169,)\chi_{216000}(28169,\cdot) χ216000(29609,)\chi_{216000}(29609,\cdot) χ216000(30329,)\chi_{216000}(30329,\cdot) χ216000(31769,)\chi_{216000}(31769,\cdot) χ216000(32489,)\chi_{216000}(32489,\cdot) χ216000(33929,)\chi_{216000}(33929,\cdot) χ216000(36089,)\chi_{216000}(36089,\cdot) χ216000(36809,)\chi_{216000}(36809,\cdot) χ216000(38969,)\chi_{216000}(38969,\cdot) χ216000(40409,)\chi_{216000}(40409,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ600)\Q(\zeta_{600})
Fixed field: Number field defined by a degree 600 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(78),e(56),e(4950))(1,e\left(\frac{7}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{49}{50}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(20969,a) \chi_{ 216000 }(20969, a) 1-111e(2360)e\left(\frac{23}{60}\right)e(413600)e\left(\frac{413}{600}\right)e(7600)e\left(\frac{7}{600}\right)e(2750)e\left(\frac{27}{50}\right)e(153200)e\left(\frac{153}{200}\right)e(239300)e\left(\frac{239}{300}\right)e(131600)e\left(\frac{131}{600}\right)e(5375)e\left(\frac{53}{75}\right)e(59200)e\left(\frac{59}{200}\right)e(161300)e\left(\frac{161}{300}\right)
sage: chi.jacobi_sum(n)
 
χ216000(20969,a)   \chi_{ 216000 }(20969,a) \; at   a=\;a = e.g. 2