from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(360))
M = H._module
chi = DirichletCharacter(H, M([180,135,280,54]))
pari: [g,chi] = znchar(Mod(41143,216000))
χ216000(7,⋅)
χ216000(2407,⋅)
χ216000(2743,⋅)
χ216000(5143,⋅)
χ216000(7207,⋅)
χ216000(9607,⋅)
χ216000(12343,⋅)
χ216000(14407,⋅)
χ216000(17143,⋅)
χ216000(19543,⋅)
χ216000(21607,⋅)
χ216000(24007,⋅)
χ216000(24343,⋅)
χ216000(26743,⋅)
χ216000(31207,⋅)
χ216000(31543,⋅)
χ216000(36007,⋅)
χ216000(38407,⋅)
χ216000(38743,⋅)
χ216000(41143,⋅)
χ216000(43207,⋅)
χ216000(45607,⋅)
χ216000(48343,⋅)
χ216000(50407,⋅)
χ216000(53143,⋅)
χ216000(55543,⋅)
χ216000(57607,⋅)
χ216000(60007,⋅)
χ216000(60343,⋅)
χ216000(62743,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (−1,e(83),e(97),e(203))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(41143,a) |
1 | 1 | e(94) | e(360319) | e(360251) | e(607) | e(12019) | e(4543) | e(36073) | e(9023) | e(12047) | e(18013) |