Properties

Label 216000.7
Modulus 216000216000
Conductor 2160021600
Order 360360
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(360))
 
M = H._module
 
chi = DirichletCharacter(H, M([180,225,320,306]))
 
pari: [g,chi] = znchar(Mod(7,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 2160021600
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 360360
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ21600(16747,)\chi_{21600}(16747,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.th

χ216000(7,)\chi_{216000}(7,\cdot) χ216000(2407,)\chi_{216000}(2407,\cdot) χ216000(2743,)\chi_{216000}(2743,\cdot) χ216000(5143,)\chi_{216000}(5143,\cdot) χ216000(7207,)\chi_{216000}(7207,\cdot) χ216000(9607,)\chi_{216000}(9607,\cdot) χ216000(12343,)\chi_{216000}(12343,\cdot) χ216000(14407,)\chi_{216000}(14407,\cdot) χ216000(17143,)\chi_{216000}(17143,\cdot) χ216000(19543,)\chi_{216000}(19543,\cdot) χ216000(21607,)\chi_{216000}(21607,\cdot) χ216000(24007,)\chi_{216000}(24007,\cdot) χ216000(24343,)\chi_{216000}(24343,\cdot) χ216000(26743,)\chi_{216000}(26743,\cdot) χ216000(31207,)\chi_{216000}(31207,\cdot) χ216000(31543,)\chi_{216000}(31543,\cdot) χ216000(36007,)\chi_{216000}(36007,\cdot) χ216000(38407,)\chi_{216000}(38407,\cdot) χ216000(38743,)\chi_{216000}(38743,\cdot) χ216000(41143,)\chi_{216000}(41143,\cdot) χ216000(43207,)\chi_{216000}(43207,\cdot) χ216000(45607,)\chi_{216000}(45607,\cdot) χ216000(48343,)\chi_{216000}(48343,\cdot) χ216000(50407,)\chi_{216000}(50407,\cdot) χ216000(53143,)\chi_{216000}(53143,\cdot) χ216000(55543,)\chi_{216000}(55543,\cdot) χ216000(57607,)\chi_{216000}(57607,\cdot) χ216000(60007,)\chi_{216000}(60007,\cdot) χ216000(60343,)\chi_{216000}(60343,\cdot) χ216000(62743,)\chi_{216000}(62743,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ360)\Q(\zeta_{360})
Fixed field: Number field defined by a degree 360 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(58),e(89),e(1720))(-1,e\left(\frac{5}{8}\right),e\left(\frac{8}{9}\right),e\left(\frac{17}{20}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(7,a) \chi_{ 216000 }(7, a) 1111e(29)e\left(\frac{2}{9}\right)e(281360)e\left(\frac{281}{360}\right)e(229360)e\left(\frac{229}{360}\right)e(5360)e\left(\frac{53}{60}\right)e(101120)e\left(\frac{101}{120}\right)e(1745)e\left(\frac{17}{45}\right)e(167360)e\left(\frac{167}{360}\right)e(790)e\left(\frac{7}{90}\right)e(73120)e\left(\frac{73}{120}\right)e(47180)e\left(\frac{47}{180}\right)
sage: chi.jacobi_sum(n)
 
χ216000(7,a)   \chi_{ 216000 }(7,a) \; at   a=\;a = e.g. 2