Properties

Label 2176.1895
Modulus $2176$
Conductor $1088$
Order $16$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2176, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,1,10]))
 
pari: [g,chi] = znchar(Mod(1895,2176))
 

Basic properties

Modulus: \(2176\)
Conductor: \(1088\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1088}(59,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2176.di

\(\chi_{2176}(151,\cdot)\) \(\chi_{2176}(519,\cdot)\) \(\chi_{2176}(631,\cdot)\) \(\chi_{2176}(807,\cdot)\) \(\chi_{2176}(1239,\cdot)\) \(\chi_{2176}(1607,\cdot)\) \(\chi_{2176}(1719,\cdot)\) \(\chi_{2176}(1895,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.101778150989126822408855042987257078218752.3

Values on generators

\((511,1157,513)\) → \((-1,e\left(\frac{1}{16}\right),e\left(\frac{5}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2176 }(1895, a) \) \(-1\)\(1\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(-1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2176 }(1895,a) \;\) at \(\;a = \) e.g. 2