from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2176, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,1,10]))
pari: [g,chi] = znchar(Mod(1895,2176))
Basic properties
Modulus: | \(2176\) | |
Conductor: | \(1088\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1088}(59,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2176.di
\(\chi_{2176}(151,\cdot)\) \(\chi_{2176}(519,\cdot)\) \(\chi_{2176}(631,\cdot)\) \(\chi_{2176}(807,\cdot)\) \(\chi_{2176}(1239,\cdot)\) \(\chi_{2176}(1607,\cdot)\) \(\chi_{2176}(1719,\cdot)\) \(\chi_{2176}(1895,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | 16.0.101778150989126822408855042987257078218752.3 |
Values on generators
\((511,1157,513)\) → \((-1,e\left(\frac{1}{16}\right),e\left(\frac{5}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 2176 }(1895, a) \) | \(-1\) | \(1\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) |
sage: chi.jacobi_sum(n)