Properties

Label 2200.3
Modulus 22002200
Conductor 22002200
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,7,16]))
 
pari: [g,chi] = znchar(Mod(3,2200))
 

Basic properties

Modulus: 22002200
Conductor: 22002200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2200.gd

χ2200(3,)\chi_{2200}(3,\cdot) χ2200(27,)\chi_{2200}(27,\cdot) χ2200(163,)\chi_{2200}(163,\cdot) χ2200(1147,)\chi_{2200}(1147,\cdot) χ2200(1467,)\chi_{2200}(1467,\cdot) χ2200(1523,)\chi_{2200}(1523,\cdot) χ2200(2083,)\chi_{2200}(2083,\cdot) χ2200(2187,)\chi_{2200}(2187,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(551,1101,177,1201)(551,1101,177,1201)(1,1,e(720),e(45))(-1,-1,e\left(\frac{7}{20}\right),e\left(\frac{4}{5}\right))

First values

aa 1-1113377991313171719192121232327272929
χ2200(3,a) \chi_{ 2200 }(3, a) 1111e(1720)e\left(\frac{17}{20}\right)e(1720)e\left(\frac{17}{20}\right)e(710)e\left(\frac{7}{10}\right)e(1920)e\left(\frac{19}{20}\right)i-ie(710)e\left(\frac{7}{10}\right)e(710)e\left(\frac{7}{10}\right)e(720)e\left(\frac{7}{20}\right)e(1120)e\left(\frac{11}{20}\right)e(45)e\left(\frac{4}{5}\right)
sage: chi.jacobi_sum(n)
 
χ2200(3,a)   \chi_{ 2200 }(3,a) \; at   a=\;a = e.g. 2