Properties

Label 2200.gd
Modulus 22002200
Conductor 22002200
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,7,16]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(3,2200))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 22002200
Conductor: 22002200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character 1-1 11 33 77 99 1313 1717 1919 2121 2323 2727 2929
χ2200(3,)\chi_{2200}(3,\cdot) 11 11 e(1720)e\left(\frac{17}{20}\right) e(1720)e\left(\frac{17}{20}\right) e(710)e\left(\frac{7}{10}\right) e(1920)e\left(\frac{19}{20}\right) i-i e(710)e\left(\frac{7}{10}\right) e(710)e\left(\frac{7}{10}\right) e(720)e\left(\frac{7}{20}\right) e(1120)e\left(\frac{11}{20}\right) e(45)e\left(\frac{4}{5}\right)
χ2200(27,)\chi_{2200}(27,\cdot) 11 11 e(1120)e\left(\frac{11}{20}\right) e(1120)e\left(\frac{11}{20}\right) e(110)e\left(\frac{1}{10}\right) e(1720)e\left(\frac{17}{20}\right) ii e(110)e\left(\frac{1}{10}\right) e(110)e\left(\frac{1}{10}\right) e(120)e\left(\frac{1}{20}\right) e(1320)e\left(\frac{13}{20}\right) e(25)e\left(\frac{2}{5}\right)
χ2200(163,)\chi_{2200}(163,\cdot) 11 11 e(920)e\left(\frac{9}{20}\right) e(920)e\left(\frac{9}{20}\right) e(910)e\left(\frac{9}{10}\right) e(320)e\left(\frac{3}{20}\right) i-i e(910)e\left(\frac{9}{10}\right) e(910)e\left(\frac{9}{10}\right) e(1920)e\left(\frac{19}{20}\right) e(720)e\left(\frac{7}{20}\right) e(35)e\left(\frac{3}{5}\right)
χ2200(1147,)\chi_{2200}(1147,\cdot) 11 11 e(720)e\left(\frac{7}{20}\right) e(720)e\left(\frac{7}{20}\right) e(710)e\left(\frac{7}{10}\right) e(920)e\left(\frac{9}{20}\right) ii e(710)e\left(\frac{7}{10}\right) e(710)e\left(\frac{7}{10}\right) e(1720)e\left(\frac{17}{20}\right) e(120)e\left(\frac{1}{20}\right) e(45)e\left(\frac{4}{5}\right)
χ2200(1467,)\chi_{2200}(1467,\cdot) 11 11 e(320)e\left(\frac{3}{20}\right) e(320)e\left(\frac{3}{20}\right) e(310)e\left(\frac{3}{10}\right) e(120)e\left(\frac{1}{20}\right) ii e(310)e\left(\frac{3}{10}\right) e(310)e\left(\frac{3}{10}\right) e(1320)e\left(\frac{13}{20}\right) e(920)e\left(\frac{9}{20}\right) e(15)e\left(\frac{1}{5}\right)
χ2200(1523,)\chi_{2200}(1523,\cdot) 11 11 e(120)e\left(\frac{1}{20}\right) e(120)e\left(\frac{1}{20}\right) e(110)e\left(\frac{1}{10}\right) e(720)e\left(\frac{7}{20}\right) i-i e(110)e\left(\frac{1}{10}\right) e(110)e\left(\frac{1}{10}\right) e(1120)e\left(\frac{11}{20}\right) e(320)e\left(\frac{3}{20}\right) e(25)e\left(\frac{2}{5}\right)
χ2200(2083,)\chi_{2200}(2083,\cdot) 11 11 e(1320)e\left(\frac{13}{20}\right) e(1320)e\left(\frac{13}{20}\right) e(310)e\left(\frac{3}{10}\right) e(1120)e\left(\frac{11}{20}\right) i-i e(310)e\left(\frac{3}{10}\right) e(310)e\left(\frac{3}{10}\right) e(320)e\left(\frac{3}{20}\right) e(1920)e\left(\frac{19}{20}\right) e(15)e\left(\frac{1}{5}\right)
χ2200(2187,)\chi_{2200}(2187,\cdot) 11 11 e(1920)e\left(\frac{19}{20}\right) e(1920)e\left(\frac{19}{20}\right) e(910)e\left(\frac{9}{10}\right) e(1320)e\left(\frac{13}{20}\right) ii e(910)e\left(\frac{9}{10}\right) e(910)e\left(\frac{9}{10}\right) e(920)e\left(\frac{9}{20}\right) e(1720)e\left(\frac{17}{20}\right) e(35)e\left(\frac{3}{5}\right)