Properties

Label 2299.135
Modulus 22992299
Conductor 22992299
Order 990990
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(990))
 
M = H._module
 
chi = DirichletCharacter(H, M([72,55]))
 
pari: [g,chi] = znchar(Mod(135,2299))
 

Basic properties

Modulus: 22992299
Conductor: 22992299
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 990990
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2299.bt

χ2299(14,)\chi_{2299}(14,\cdot) χ2299(15,)\chi_{2299}(15,\cdot) χ2299(48,)\chi_{2299}(48,\cdot) χ2299(53,)\chi_{2299}(53,\cdot) χ2299(59,)\chi_{2299}(59,\cdot) χ2299(60,)\chi_{2299}(60,\cdot) χ2299(70,)\chi_{2299}(70,\cdot) χ2299(71,)\chi_{2299}(71,\cdot) χ2299(86,)\chi_{2299}(86,\cdot) χ2299(91,)\chi_{2299}(91,\cdot) χ2299(97,)\chi_{2299}(97,\cdot) χ2299(108,)\chi_{2299}(108,\cdot) χ2299(135,)\chi_{2299}(135,\cdot) χ2299(136,)\chi_{2299}(136,\cdot) χ2299(146,)\chi_{2299}(146,\cdot) χ2299(147,)\chi_{2299}(147,\cdot) χ2299(174,)\chi_{2299}(174,\cdot) χ2299(181,)\chi_{2299}(181,\cdot) χ2299(185,)\chi_{2299}(185,\cdot) χ2299(192,)\chi_{2299}(192,\cdot) χ2299(203,)\chi_{2299}(203,\cdot) χ2299(212,)\chi_{2299}(212,\cdot) χ2299(223,)\chi_{2299}(223,\cdot) χ2299(224,)\chi_{2299}(224,\cdot) χ2299(257,)\chi_{2299}(257,\cdot) χ2299(262,)\chi_{2299}(262,\cdot) χ2299(268,)\chi_{2299}(268,\cdot) χ2299(279,)\chi_{2299}(279,\cdot) χ2299(280,)\chi_{2299}(280,\cdot) χ2299(295,)\chi_{2299}(295,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ495)\Q(\zeta_{495})
Fixed field: Number field defined by a degree 990 polynomial (not computed)

Values on generators

(970,1332)(970,1332)(e(455),e(118))(e\left(\frac{4}{55}\right),e\left(\frac{1}{18}\right))

First values

aa 1-111223344556677889910101212
χ2299(135,a) \chi_{ 2299 }(135, a) 1-111e(127990)e\left(\frac{127}{990}\right)e(1190)e\left(\frac{11}{90}\right)e(127495)e\left(\frac{127}{495}\right)e(134495)e\left(\frac{134}{495}\right)e(124495)e\left(\frac{124}{495}\right)e(139165)e\left(\frac{139}{165}\right)e(127330)e\left(\frac{127}{330}\right)e(1145)e\left(\frac{11}{45}\right)e(79198)e\left(\frac{79}{198}\right)e(2566)e\left(\frac{25}{66}\right)
sage: chi.jacobi_sum(n)
 
χ2299(135,a)   \chi_{ 2299 }(135,a) \; at   a=\;a = e.g. 2