from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2299, base_ring=CyclotomicField(990))
M = H._module
chi = DirichletCharacter(H, M([252,385]))
pari: [g,chi] = znchar(Mod(223,2299))
χ2299(14,⋅)
χ2299(15,⋅)
χ2299(48,⋅)
χ2299(53,⋅)
χ2299(59,⋅)
χ2299(60,⋅)
χ2299(70,⋅)
χ2299(71,⋅)
χ2299(86,⋅)
χ2299(91,⋅)
χ2299(97,⋅)
χ2299(108,⋅)
χ2299(135,⋅)
χ2299(136,⋅)
χ2299(146,⋅)
χ2299(147,⋅)
χ2299(174,⋅)
χ2299(181,⋅)
χ2299(185,⋅)
χ2299(192,⋅)
χ2299(203,⋅)
χ2299(212,⋅)
χ2299(223,⋅)
χ2299(224,⋅)
χ2299(257,⋅)
χ2299(262,⋅)
χ2299(268,⋅)
χ2299(279,⋅)
χ2299(280,⋅)
χ2299(295,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(970,1332) → (e(5514),e(187))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ2299(223,a) |
−1 | 1 | e(990637) | e(9041) | e(495142) | e(49529) | e(49549) | e(16519) | e(330307) | e(4541) | e(198139) | e(6649) |