from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2320, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,21,14,25]))
pari: [g,chi] = znchar(Mod(2099,2320))
Basic properties
Modulus: | \(2320\) | |
Conductor: | \(2320\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2320.du
\(\chi_{2320}(19,\cdot)\) \(\chi_{2320}(619,\cdot)\) \(\chi_{2320}(659,\cdot)\) \(\chi_{2320}(739,\cdot)\) \(\chi_{2320}(859,\cdot)\) \(\chi_{2320}(1099,\cdot)\) \(\chi_{2320}(1419,\cdot)\) \(\chi_{2320}(1539,\cdot)\) \(\chi_{2320}(1859,\cdot)\) \(\chi_{2320}(2099,\cdot)\) \(\chi_{2320}(2219,\cdot)\) \(\chi_{2320}(2299,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | Number field defined by a degree 28 polynomial |
Values on generators
\((2031,581,1857,321)\) → \((-1,-i,-1,e\left(\frac{25}{28}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 2320 }(2099, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(i\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) |
sage: chi.jacobi_sum(n)