Properties

Label 2320.du
Modulus $2320$
Conductor $2320$
Order $28$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,21,14,9]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(19,2320))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2320\)
Conductor: \(2320\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{2320}(19,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{15}{28}\right)\) \(i\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{2320}(619,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{28}\right)\) \(-i\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{2320}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{19}{28}\right)\) \(i\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{2320}(739,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{28}\right)\) \(i\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{2320}(859,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{9}{28}\right)\) \(-i\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{2320}(1099,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{13}{28}\right)\) \(-i\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{2320}(1419,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{25}{28}\right)\) \(-i\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{2320}(1539,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{11}{28}\right)\) \(i\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{2320}(1859,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{27}{28}\right)\) \(i\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{2320}(2099,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{23}{28}\right)\) \(i\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{2320}(2219,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{17}{28}\right)\) \(-i\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{2320}(2299,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{28}\right)\) \(-i\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{6}{7}\right)\)