Properties

Label 243675.17
Modulus 243675243675
Conductor 8122581225
Order 34203420
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(3420))
 
M = H._module
 
chi = DirichletCharacter(H, M([2850,2223,2260]))
 
pari: [g,chi] = znchar(Mod(17,243675))
 

Basic properties

Modulus: 243675243675
Conductor: 8122581225
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 34203420
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ81225(54167,)\chi_{81225}(54167,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.bdt

χ243675(17,)\chi_{243675}(17,\cdot) χ243675(233,)\chi_{243675}(233,\cdot) χ243675(1277,)\chi_{243675}(1277,\cdot) χ243675(1358,)\chi_{243675}(1358,\cdot) χ243675(1412,)\chi_{243675}(1412,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3420)\Q(\zeta_{3420})
Fixed field: Number field defined by a degree 3420 polynomial (not computed)

Values on generators

(36101,77977,129601)(36101,77977,129601)(e(56),e(1320),e(113171))(e\left(\frac{5}{6}\right),e\left(\frac{13}{20}\right),e\left(\frac{113}{171}\right))

First values

aa 1-11122447788111113131414161617172222
χ243675(17,a) \chi_{ 243675 }(17, a) 1111e(4933420)e\left(\frac{493}{3420}\right)e(4931710)e\left(\frac{493}{1710}\right)e(161228)e\left(\frac{161}{228}\right)e(4931140)e\left(\frac{493}{1140}\right)e(121190)e\left(\frac{121}{190}\right)e(14573420)e\left(\frac{1457}{3420}\right)e(727855)e\left(\frac{727}{855}\right)e(493855)e\left(\frac{493}{855}\right)e(10093420)e\left(\frac{1009}{3420}\right)e(26713420)e\left(\frac{2671}{3420}\right)
sage: chi.jacobi_sum(n)
 
χ243675(17,a)   \chi_{ 243675 }(17,a) \; at   a=\;a = e.g. 2