Properties

Label 243675.233
Modulus $243675$
Conductor $81225$
Order $3420$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(3420))
 
M = H._module
 
chi = DirichletCharacter(H, M([2850,513,1780]))
 
pari: [g,chi] = znchar(Mod(233,243675))
 

Basic properties

Modulus: \(243675\)
Conductor: \(81225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3420\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{81225}(54383,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.bdt

\(\chi_{243675}(17,\cdot)\) \(\chi_{243675}(233,\cdot)\) \(\chi_{243675}(1277,\cdot)\) \(\chi_{243675}(1358,\cdot)\) \(\chi_{243675}(1412,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{3420})$
Fixed field: Number field defined by a degree 3420 polynomial (not computed)

Values on generators

\((36101,77977,129601)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{3}{20}\right),e\left(\frac{89}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 243675 }(233, a) \) \(1\)\(1\)\(e\left(\frac{1723}{3420}\right)\)\(e\left(\frac{13}{1710}\right)\)\(e\left(\frac{35}{228}\right)\)\(e\left(\frac{583}{1140}\right)\)\(e\left(\frac{61}{190}\right)\)\(e\left(\frac{2567}{3420}\right)\)\(e\left(\frac{562}{855}\right)\)\(e\left(\frac{13}{855}\right)\)\(e\left(\frac{259}{3420}\right)\)\(e\left(\frac{2821}{3420}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 243675 }(233,a) \;\) at \(\;a = \) e.g. 2