from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(243675, base_ring=CyclotomicField(684))
M = H._module
chi = DirichletCharacter(H, M([76,171,312]))
pari: [g,chi] = znchar(Mod(25357,243675))
χ243675(7,⋅)
χ243675(2443,⋅)
χ243675(2743,⋅)
χ243675(3982,⋅)
χ243675(4282,⋅)
χ243675(6718,⋅)
χ243675(7018,⋅)
χ243675(8257,⋅)
χ243675(8557,⋅)
χ243675(10993,⋅)
χ243675(11293,⋅)
χ243675(12532,⋅)
χ243675(12832,⋅)
χ243675(15268,⋅)
χ243675(15568,⋅)
χ243675(16807,⋅)
χ243675(17107,⋅)
χ243675(19543,⋅)
χ243675(19843,⋅)
χ243675(21082,⋅)
χ243675(21382,⋅)
χ243675(23818,⋅)
χ243675(25357,⋅)
χ243675(25657,⋅)
χ243675(28093,⋅)
χ243675(28393,⋅)
χ243675(29632,⋅)
χ243675(29932,⋅)
χ243675(32368,⋅)
χ243675(32668,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(36101,77977,129601) → (e(91),i,e(5726))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ243675(25357,a) |
−1 | 1 | e(684559) | e(342217) | e(684307) | e(228103) | e(171166) | e(684485) | e(34291) | e(17146) | e(2281) | e(684539) |