Properties

Label 243675.7
Modulus 243675243675
Conductor 4873548735
Order 684684
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(684))
 
M = H._module
 
chi = DirichletCharacter(H, M([608,171,300]))
 
pari: [g,chi] = znchar(Mod(7,243675))
 

Basic properties

Modulus: 243675243675
Conductor: 4873548735
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 684684
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ48735(7,)\chi_{48735}(7,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.yj

χ243675(7,)\chi_{243675}(7,\cdot) χ243675(2443,)\chi_{243675}(2443,\cdot) χ243675(2743,)\chi_{243675}(2743,\cdot) χ243675(3982,)\chi_{243675}(3982,\cdot) χ243675(4282,)\chi_{243675}(4282,\cdot) χ243675(6718,)\chi_{243675}(6718,\cdot) χ243675(7018,)\chi_{243675}(7018,\cdot) χ243675(8257,)\chi_{243675}(8257,\cdot) χ243675(8557,)\chi_{243675}(8557,\cdot) χ243675(10993,)\chi_{243675}(10993,\cdot) χ243675(11293,)\chi_{243675}(11293,\cdot) χ243675(12532,)\chi_{243675}(12532,\cdot) χ243675(12832,)\chi_{243675}(12832,\cdot) χ243675(15268,)\chi_{243675}(15268,\cdot) χ243675(15568,)\chi_{243675}(15568,\cdot) χ243675(16807,)\chi_{243675}(16807,\cdot) χ243675(17107,)\chi_{243675}(17107,\cdot) χ243675(19543,)\chi_{243675}(19543,\cdot) χ243675(19843,)\chi_{243675}(19843,\cdot) χ243675(21082,)\chi_{243675}(21082,\cdot) χ243675(21382,)\chi_{243675}(21382,\cdot) χ243675(23818,)\chi_{243675}(23818,\cdot) χ243675(25357,)\chi_{243675}(25357,\cdot) χ243675(25657,)\chi_{243675}(25657,\cdot) χ243675(28093,)\chi_{243675}(28093,\cdot) χ243675(28393,)\chi_{243675}(28393,\cdot) χ243675(29632,)\chi_{243675}(29632,\cdot) χ243675(29932,)\chi_{243675}(29932,\cdot) χ243675(32368,)\chi_{243675}(32368,\cdot) χ243675(32668,)\chi_{243675}(32668,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ684)\Q(\zeta_{684})
Fixed field: Number field defined by a degree 684 polynomial (not computed)

Values on generators

(36101,77977,129601)(36101,77977,129601)(e(89),i,e(2557))(e\left(\frac{8}{9}\right),i,e\left(\frac{25}{57}\right))

First values

aa 1-11122447788111113131414161617172222
χ243675(7,a) \chi_{ 243675 }(7, a) 1-111e(395684)e\left(\frac{395}{684}\right)e(53342)e\left(\frac{53}{342}\right)e(179684)e\left(\frac{179}{684}\right)e(167228)e\left(\frac{167}{228}\right)e(50171)e\left(\frac{50}{171}\right)e(109684)e\left(\frac{109}{684}\right)e(287342)e\left(\frac{287}{342}\right)e(53171)e\left(\frac{53}{171}\right)e(161228)e\left(\frac{161}{228}\right)e(595684)e\left(\frac{595}{684}\right)
sage: chi.jacobi_sum(n)
 
χ243675(7,a)   \chi_{ 243675 }(7,a) \; at   a=\;a = e.g. 2