Properties

Label 243675.7
Modulus $243675$
Conductor $48735$
Order $684$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(684))
 
M = H._module
 
chi = DirichletCharacter(H, M([608,171,300]))
 
pari: [g,chi] = znchar(Mod(7,243675))
 

Basic properties

Modulus: \(243675\)
Conductor: \(48735\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(684\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{48735}(7,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.yj

\(\chi_{243675}(7,\cdot)\) \(\chi_{243675}(2443,\cdot)\) \(\chi_{243675}(2743,\cdot)\) \(\chi_{243675}(3982,\cdot)\) \(\chi_{243675}(4282,\cdot)\) \(\chi_{243675}(6718,\cdot)\) \(\chi_{243675}(7018,\cdot)\) \(\chi_{243675}(8257,\cdot)\) \(\chi_{243675}(8557,\cdot)\) \(\chi_{243675}(10993,\cdot)\) \(\chi_{243675}(11293,\cdot)\) \(\chi_{243675}(12532,\cdot)\) \(\chi_{243675}(12832,\cdot)\) \(\chi_{243675}(15268,\cdot)\) \(\chi_{243675}(15568,\cdot)\) \(\chi_{243675}(16807,\cdot)\) \(\chi_{243675}(17107,\cdot)\) \(\chi_{243675}(19543,\cdot)\) \(\chi_{243675}(19843,\cdot)\) \(\chi_{243675}(21082,\cdot)\) \(\chi_{243675}(21382,\cdot)\) \(\chi_{243675}(23818,\cdot)\) \(\chi_{243675}(25357,\cdot)\) \(\chi_{243675}(25657,\cdot)\) \(\chi_{243675}(28093,\cdot)\) \(\chi_{243675}(28393,\cdot)\) \(\chi_{243675}(29632,\cdot)\) \(\chi_{243675}(29932,\cdot)\) \(\chi_{243675}(32368,\cdot)\) \(\chi_{243675}(32668,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{684})$
Fixed field: Number field defined by a degree 684 polynomial (not computed)

Values on generators

\((36101,77977,129601)\) → \((e\left(\frac{8}{9}\right),i,e\left(\frac{25}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 243675 }(7, a) \) \(-1\)\(1\)\(e\left(\frac{395}{684}\right)\)\(e\left(\frac{53}{342}\right)\)\(e\left(\frac{179}{684}\right)\)\(e\left(\frac{167}{228}\right)\)\(e\left(\frac{50}{171}\right)\)\(e\left(\frac{109}{684}\right)\)\(e\left(\frac{287}{342}\right)\)\(e\left(\frac{53}{171}\right)\)\(e\left(\frac{161}{228}\right)\)\(e\left(\frac{595}{684}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 243675 }(7,a) \;\) at \(\;a = \) e.g. 2