from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(248400, base_ring=CyclotomicField(1980))
M = H._module
chi = DirichletCharacter(H, M([0,495,1760,891,1800]))
pari: [g,chi] = znchar(Mod(13237,248400))
χ248400(13,⋅)
χ248400(997,⋅)
χ248400(1237,⋅)
χ248400(1453,⋅)
χ248400(2653,⋅)
χ248400(2677,⋅)
χ248400(3397,⋅)
χ248400(3613,⋅)
χ248400(3877,⋅)
χ248400(4333,⋅)
χ248400(4813,⋅)
χ248400(5053,⋅)
χ248400(5317,⋅)
χ248400(5533,⋅)
χ248400(6973,⋅)
χ248400(7477,⋅)
χ248400(7717,⋅)
χ248400(8197,⋅)
χ248400(8413,⋅)
χ248400(8917,⋅)
χ248400(9133,⋅)
χ248400(9373,⋅)
χ248400(9853,⋅)
χ248400(10573,⋅)
χ248400(10813,⋅)
χ248400(12037,⋅)
χ248400(13237,⋅)
χ248400(14197,⋅)
χ248400(14677,⋅)
χ248400(14917,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(93151,62101,211601,158977,194401) → (1,i,e(98),e(209),e(1110))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ248400(13237,a) |
−1 | 1 | e(39697) | e(1980371) | e(990137) | e(660361) | e(660101) | e(19801787) | e(495412) | e(330239) | e(990317) | e(9910) |