Properties

Label 248400.4813
Modulus 248400248400
Conductor 248400248400
Order 19801980
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(248400, base_ring=CyclotomicField(1980))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1485,1760,1881,1620]))
 
pari: [g,chi] = znchar(Mod(4813,248400))
 

Basic properties

Modulus: 248400248400
Conductor: 248400248400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 19801980
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 248400.bkg

χ248400(13,)\chi_{248400}(13,\cdot) χ248400(997,)\chi_{248400}(997,\cdot) χ248400(1237,)\chi_{248400}(1237,\cdot) χ248400(1453,)\chi_{248400}(1453,\cdot) χ248400(2653,)\chi_{248400}(2653,\cdot) χ248400(2677,)\chi_{248400}(2677,\cdot) χ248400(3397,)\chi_{248400}(3397,\cdot) χ248400(3613,)\chi_{248400}(3613,\cdot) χ248400(3877,)\chi_{248400}(3877,\cdot) χ248400(4333,)\chi_{248400}(4333,\cdot) χ248400(4813,)\chi_{248400}(4813,\cdot) χ248400(5053,)\chi_{248400}(5053,\cdot) χ248400(5317,)\chi_{248400}(5317,\cdot) χ248400(5533,)\chi_{248400}(5533,\cdot) χ248400(6973,)\chi_{248400}(6973,\cdot) χ248400(7477,)\chi_{248400}(7477,\cdot) χ248400(7717,)\chi_{248400}(7717,\cdot) χ248400(8197,)\chi_{248400}(8197,\cdot) χ248400(8413,)\chi_{248400}(8413,\cdot) χ248400(8917,)\chi_{248400}(8917,\cdot) χ248400(9133,)\chi_{248400}(9133,\cdot) χ248400(9373,)\chi_{248400}(9373,\cdot) χ248400(9853,)\chi_{248400}(9853,\cdot) χ248400(10573,)\chi_{248400}(10573,\cdot) χ248400(10813,)\chi_{248400}(10813,\cdot) χ248400(12037,)\chi_{248400}(12037,\cdot) χ248400(13237,)\chi_{248400}(13237,\cdot) χ248400(14197,)\chi_{248400}(14197,\cdot) χ248400(14677,)\chi_{248400}(14677,\cdot) χ248400(14917,)\chi_{248400}(14917,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1980)\Q(\zeta_{1980})
Fixed field: Number field defined by a degree 1980 polynomial (not computed)

Values on generators

(93151,62101,211601,158977,194401)(93151,62101,211601,158977,194401)(1,i,e(89),e(1920),e(911))(1,-i,e\left(\frac{8}{9}\right),e\left(\frac{19}{20}\right),e\left(\frac{9}{11}\right))

First values

aa 1-11177111113131717191929293131373741414343
χ248400(4813,a) \chi_{ 248400 }(4813, a) 1-111e(7396)e\left(\frac{7}{396}\right)e(17211980)e\left(\frac{1721}{1980}\right)e(857990)e\left(\frac{857}{990}\right)e(271660)e\left(\frac{271}{660}\right)e(191660)e\left(\frac{191}{660}\right)e(15171980)e\left(\frac{1517}{1980}\right)e(142495)e\left(\frac{142}{495}\right)e(269330)e\left(\frac{269}{330}\right)e(227990)e\left(\frac{227}{990}\right)e(6499)e\left(\frac{64}{99}\right)
sage: chi.jacobi_sum(n)
 
χ248400(4813,a)   \chi_{ 248400 }(4813,a) \; at   a=\;a = e.g. 2