Properties

Label 250.49
Modulus 250250
Conductor 2525
Order 1010
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([7]))
 
pari: [g,chi] = znchar(Mod(49,250))
 

Basic properties

Modulus: 250250
Conductor: 2525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25(9,)\chi_{25}(9,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 250.e

χ250(49,)\chi_{250}(49,\cdot) χ250(99,)\chi_{250}(99,\cdot) χ250(149,)\chi_{250}(149,\cdot) χ250(199,)\chi_{250}(199,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ25)+\Q(\zeta_{25})^+

Values on generators

127127e(710)e\left(\frac{7}{10}\right)

First values

aa 1-1113377991111131317171919212123232727
χ250(49,a) \chi_{ 250 }(49, a) 1111e(910)e\left(\frac{9}{10}\right)1-1e(45)e\left(\frac{4}{5}\right)e(15)e\left(\frac{1}{5}\right)e(310)e\left(\frac{3}{10}\right)e(110)e\left(\frac{1}{10}\right)e(35)e\left(\frac{3}{5}\right)e(25)e\left(\frac{2}{5}\right)e(710)e\left(\frac{7}{10}\right)e(710)e\left(\frac{7}{10}\right)
sage: chi.jacobi_sum(n)
 
χ250(49,a)   \chi_{ 250 }(49,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ250(49,))   \tau_{ a }( \chi_{ 250 }(49,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ250(49,),χ250(n,))   J(\chi_{ 250 }(49,·),\chi_{ 250 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ250(49,))  K(a,b,\chi_{ 250 }(49,·)) \; at   a,b=\; a,b = e.g. 1,2