Properties

Label 253.26
Modulus $253$
Conductor $253$
Order $55$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,80]))
 
pari: [g,chi] = znchar(Mod(26,253))
 

Basic properties

Modulus: \(253\)
Conductor: \(253\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(55\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.m

\(\chi_{253}(3,\cdot)\) \(\chi_{253}(4,\cdot)\) \(\chi_{253}(9,\cdot)\) \(\chi_{253}(16,\cdot)\) \(\chi_{253}(25,\cdot)\) \(\chi_{253}(26,\cdot)\) \(\chi_{253}(27,\cdot)\) \(\chi_{253}(31,\cdot)\) \(\chi_{253}(36,\cdot)\) \(\chi_{253}(48,\cdot)\) \(\chi_{253}(49,\cdot)\) \(\chi_{253}(58,\cdot)\) \(\chi_{253}(59,\cdot)\) \(\chi_{253}(64,\cdot)\) \(\chi_{253}(71,\cdot)\) \(\chi_{253}(75,\cdot)\) \(\chi_{253}(81,\cdot)\) \(\chi_{253}(82,\cdot)\) \(\chi_{253}(104,\cdot)\) \(\chi_{253}(108,\cdot)\) \(\chi_{253}(119,\cdot)\) \(\chi_{253}(124,\cdot)\) \(\chi_{253}(141,\cdot)\) \(\chi_{253}(146,\cdot)\) \(\chi_{253}(147,\cdot)\) \(\chi_{253}(163,\cdot)\) \(\chi_{253}(169,\cdot)\) \(\chi_{253}(170,\cdot)\) \(\chi_{253}(174,\cdot)\) \(\chi_{253}(179,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

\((24,166)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{8}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 253 }(26, a) \) \(1\)\(1\)\(e\left(\frac{36}{55}\right)\)\(e\left(\frac{13}{55}\right)\)\(e\left(\frac{17}{55}\right)\)\(e\left(\frac{29}{55}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{12}{55}\right)\)\(e\left(\frac{53}{55}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{6}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 253 }(26,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 253 }(26,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 253 }(26,·),\chi_{ 253 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 253 }(26,·)) \;\) at \(\; a,b = \) e.g. 1,2