from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(253, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([22,80]))
pari: [g,chi] = znchar(Mod(26,253))
χ253(3,⋅)
χ253(4,⋅)
χ253(9,⋅)
χ253(16,⋅)
χ253(25,⋅)
χ253(26,⋅)
χ253(27,⋅)
χ253(31,⋅)
χ253(36,⋅)
χ253(48,⋅)
χ253(49,⋅)
χ253(58,⋅)
χ253(59,⋅)
χ253(64,⋅)
χ253(71,⋅)
χ253(75,⋅)
χ253(81,⋅)
χ253(82,⋅)
χ253(104,⋅)
χ253(108,⋅)
χ253(119,⋅)
χ253(124,⋅)
χ253(141,⋅)
χ253(146,⋅)
χ253(147,⋅)
χ253(163,⋅)
χ253(169,⋅)
χ253(170,⋅)
χ253(174,⋅)
χ253(179,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(24,166) → (e(51),e(118))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ253(26,a) |
1 | 1 | e(5536) | e(5513) | e(5517) | e(5529) | e(5549) | e(5512) | e(5553) | e(5526) | e(112) | e(116) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)