Properties

Label 253.36
Modulus 253253
Conductor 253253
Order 5555
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([88,70]))
 
pari: [g,chi] = znchar(Mod(36,253))
 

Basic properties

Modulus: 253253
Conductor: 253253
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5555
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.m

χ253(3,)\chi_{253}(3,\cdot) χ253(4,)\chi_{253}(4,\cdot) χ253(9,)\chi_{253}(9,\cdot) χ253(16,)\chi_{253}(16,\cdot) χ253(25,)\chi_{253}(25,\cdot) χ253(26,)\chi_{253}(26,\cdot) χ253(27,)\chi_{253}(27,\cdot) χ253(31,)\chi_{253}(31,\cdot) χ253(36,)\chi_{253}(36,\cdot) χ253(48,)\chi_{253}(48,\cdot) χ253(49,)\chi_{253}(49,\cdot) χ253(58,)\chi_{253}(58,\cdot) χ253(59,)\chi_{253}(59,\cdot) χ253(64,)\chi_{253}(64,\cdot) χ253(71,)\chi_{253}(71,\cdot) χ253(75,)\chi_{253}(75,\cdot) χ253(81,)\chi_{253}(81,\cdot) χ253(82,)\chi_{253}(82,\cdot) χ253(104,)\chi_{253}(104,\cdot) χ253(108,)\chi_{253}(108,\cdot) χ253(119,)\chi_{253}(119,\cdot) χ253(124,)\chi_{253}(124,\cdot) χ253(141,)\chi_{253}(141,\cdot) χ253(146,)\chi_{253}(146,\cdot) χ253(147,)\chi_{253}(147,\cdot) χ253(163,)\chi_{253}(163,\cdot) χ253(169,)\chi_{253}(169,\cdot) χ253(170,)\chi_{253}(170,\cdot) χ253(174,)\chi_{253}(174,\cdot) χ253(179,)\chi_{253}(179,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

(24,166)(24,166)(e(45),e(711))(e\left(\frac{4}{5}\right),e\left(\frac{7}{11}\right))

First values

aa 1-111223344556677889910101212
χ253(36,a) \chi_{ 253 }(36, a) 1111e(455)e\left(\frac{4}{55}\right)e(3255)e\left(\frac{32}{55}\right)e(855)e\left(\frac{8}{55}\right)e(4655)e\left(\frac{46}{55}\right)e(3655)e\left(\frac{36}{55}\right)e(3855)e\left(\frac{38}{55}\right)e(1255)e\left(\frac{12}{55}\right)e(955)e\left(\frac{9}{55}\right)e(1011)e\left(\frac{10}{11}\right)e(811)e\left(\frac{8}{11}\right)
sage: chi.jacobi_sum(n)
 
χ253(36,a)   \chi_{ 253 }(36,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ253(36,))   \tau_{ a }( \chi_{ 253 }(36,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ253(36,),χ253(n,))   J(\chi_{ 253 }(36,·),\chi_{ 253 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ253(36,))  K(a,b,\chi_{ 253 }(36,·)) \; at   a,b=\; a,b = e.g. 1,2