Properties

Label 2557.41
Modulus $2557$
Conductor $2557$
Order $2556$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(2556))
 
M = H._module
 
chi = DirichletCharacter(H, M([263]))
 
pari: [g,chi] = znchar(Mod(41,2557))
 

Basic properties

Modulus: \(2557\)
Conductor: \(2557\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2556\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.r

\(\chi_{2557}(2,\cdot)\) \(\chi_{2557}(5,\cdot)\) \(\chi_{2557}(6,\cdot)\) \(\chi_{2557}(15,\cdot)\) \(\chi_{2557}(17,\cdot)\) \(\chi_{2557}(24,\cdot)\) \(\chi_{2557}(31,\cdot)\) \(\chi_{2557}(32,\cdot)\) \(\chi_{2557}(41,\cdot)\) \(\chi_{2557}(42,\cdot)\) \(\chi_{2557}(43,\cdot)\) \(\chi_{2557}(47,\cdot)\) \(\chi_{2557}(51,\cdot)\) \(\chi_{2557}(54,\cdot)\) \(\chi_{2557}(56,\cdot)\) \(\chi_{2557}(60,\cdot)\) \(\chi_{2557}(66,\cdot)\) \(\chi_{2557}(67,\cdot)\) \(\chi_{2557}(72,\cdot)\) \(\chi_{2557}(78,\cdot)\) \(\chi_{2557}(80,\cdot)\) \(\chi_{2557}(83,\cdot)\) \(\chi_{2557}(88,\cdot)\) \(\chi_{2557}(89,\cdot)\) \(\chi_{2557}(98,\cdot)\) \(\chi_{2557}(103,\cdot)\) \(\chi_{2557}(104,\cdot)\) \(\chi_{2557}(105,\cdot)\) \(\chi_{2557}(106,\cdot)\) \(\chi_{2557}(107,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2556})$
Fixed field: Number field defined by a degree 2556 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{263}{2556}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2557 }(41, a) \) \(-1\)\(1\)\(e\left(\frac{263}{2556}\right)\)\(e\left(\frac{569}{639}\right)\)\(e\left(\frac{263}{1278}\right)\)\(e\left(\frac{2465}{2556}\right)\)\(e\left(\frac{2539}{2556}\right)\)\(e\left(\frac{143}{1278}\right)\)\(e\left(\frac{263}{852}\right)\)\(e\left(\frac{499}{639}\right)\)\(e\left(\frac{43}{639}\right)\)\(e\left(\frac{610}{639}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2557 }(41,a) \;\) at \(\;a = \) e.g. 2