from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(2556))
M = H._module
chi = DirichletCharacter(H, M([1001]))
pari: [g,chi] = znchar(Mod(89,2557))
χ2557(2,⋅)
χ2557(5,⋅)
χ2557(6,⋅)
χ2557(15,⋅)
χ2557(17,⋅)
χ2557(24,⋅)
χ2557(31,⋅)
χ2557(32,⋅)
χ2557(41,⋅)
χ2557(42,⋅)
χ2557(43,⋅)
χ2557(47,⋅)
χ2557(51,⋅)
χ2557(54,⋅)
χ2557(56,⋅)
χ2557(60,⋅)
χ2557(66,⋅)
χ2557(67,⋅)
χ2557(72,⋅)
χ2557(78,⋅)
χ2557(80,⋅)
χ2557(83,⋅)
χ2557(88,⋅)
χ2557(89,⋅)
χ2557(98,⋅)
χ2557(103,⋅)
χ2557(104,⋅)
χ2557(105,⋅)
χ2557(106,⋅)
χ2557(107,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(25561001)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(89,a) |
−1 | 1 | e(25561001) | e(63947) | e(12781001) | e(25561403) | e(25561189) | e(1278899) | e(852149) | e(63994) | e(639601) | e(639412) |