Properties

Label 259200.1559
Modulus $259200$
Conductor $129600$
Order $2160$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(2160))
 
M = H._module
 
chi = DirichletCharacter(H, M([1080,945,1000,1512]))
 
pari: [g,chi] = znchar(Mod(1559,259200))
 

Basic properties

Modulus: \(259200\)
Conductor: \(129600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2160\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{129600}(58259,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.bab

\(\chi_{259200}(119,\cdot)\) \(\chi_{259200}(839,\cdot)\) \(\chi_{259200}(1319,\cdot)\) \(\chi_{259200}(1559,\cdot)\) \(\chi_{259200}(2039,\cdot)\) \(\chi_{259200}(2279,\cdot)\) \(\chi_{259200}(2759,\cdot)\) \(\chi_{259200}(3479,\cdot)\) \(\chi_{259200}(3719,\cdot)\) \(\chi_{259200}(4439,\cdot)\) \(\chi_{259200}(4919,\cdot)\) \(\chi_{259200}(5159,\cdot)\) \(\chi_{259200}(5639,\cdot)\) \(\chi_{259200}(5879,\cdot)\) \(\chi_{259200}(6359,\cdot)\) \(\chi_{259200}(7079,\cdot)\) \(\chi_{259200}(7319,\cdot)\) \(\chi_{259200}(8039,\cdot)\) \(\chi_{259200}(8519,\cdot)\) \(\chi_{259200}(8759,\cdot)\) \(\chi_{259200}(9239,\cdot)\) \(\chi_{259200}(9479,\cdot)\) \(\chi_{259200}(9959,\cdot)\) \(\chi_{259200}(10679,\cdot)\) \(\chi_{259200}(10919,\cdot)\) \(\chi_{259200}(11639,\cdot)\) \(\chi_{259200}(12119,\cdot)\) \(\chi_{259200}(12359,\cdot)\) \(\chi_{259200}(12839,\cdot)\) \(\chi_{259200}(13079,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2160})$
Fixed field: Number field defined by a degree 2160 polynomial (not computed)

Values on generators

\((157951,202501,6401,72577)\) → \((-1,e\left(\frac{7}{16}\right),e\left(\frac{25}{54}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 259200 }(1559, a) \) \(1\)\(1\)\(e\left(\frac{169}{216}\right)\)\(e\left(\frac{1957}{2160}\right)\)\(e\left(\frac{1223}{2160}\right)\)\(e\left(\frac{113}{180}\right)\)\(e\left(\frac{277}{720}\right)\)\(e\left(\frac{451}{1080}\right)\)\(e\left(\frac{739}{2160}\right)\)\(e\left(\frac{116}{135}\right)\)\(e\left(\frac{491}{720}\right)\)\(e\left(\frac{499}{1080}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 259200 }(1559,a) \;\) at \(\;a = \) e.g. 2