Properties

Label 259200.839
Modulus 259200259200
Conductor 129600129600
Order 21602160
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(2160))
 
M = H._module
 
chi = DirichletCharacter(H, M([1080,1755,1480,648]))
 
pari: [g,chi] = znchar(Mod(839,259200))
 

Basic properties

Modulus: 259200259200
Conductor: 129600129600
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 21602160
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ129600(8939,)\chi_{129600}(8939,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.bab

χ259200(119,)\chi_{259200}(119,\cdot) χ259200(839,)\chi_{259200}(839,\cdot) χ259200(1319,)\chi_{259200}(1319,\cdot) χ259200(1559,)\chi_{259200}(1559,\cdot) χ259200(2039,)\chi_{259200}(2039,\cdot) χ259200(2279,)\chi_{259200}(2279,\cdot) χ259200(2759,)\chi_{259200}(2759,\cdot) χ259200(3479,)\chi_{259200}(3479,\cdot) χ259200(3719,)\chi_{259200}(3719,\cdot) χ259200(4439,)\chi_{259200}(4439,\cdot) χ259200(4919,)\chi_{259200}(4919,\cdot) χ259200(5159,)\chi_{259200}(5159,\cdot) χ259200(5639,)\chi_{259200}(5639,\cdot) χ259200(5879,)\chi_{259200}(5879,\cdot) χ259200(6359,)\chi_{259200}(6359,\cdot) χ259200(7079,)\chi_{259200}(7079,\cdot) χ259200(7319,)\chi_{259200}(7319,\cdot) χ259200(8039,)\chi_{259200}(8039,\cdot) χ259200(8519,)\chi_{259200}(8519,\cdot) χ259200(8759,)\chi_{259200}(8759,\cdot) χ259200(9239,)\chi_{259200}(9239,\cdot) χ259200(9479,)\chi_{259200}(9479,\cdot) χ259200(9959,)\chi_{259200}(9959,\cdot) χ259200(10679,)\chi_{259200}(10679,\cdot) χ259200(10919,)\chi_{259200}(10919,\cdot) χ259200(11639,)\chi_{259200}(11639,\cdot) χ259200(12119,)\chi_{259200}(12119,\cdot) χ259200(12359,)\chi_{259200}(12359,\cdot) χ259200(12839,)\chi_{259200}(12839,\cdot) χ259200(13079,)\chi_{259200}(13079,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ2160)\Q(\zeta_{2160})
Fixed field: Number field defined by a degree 2160 polynomial (not computed)

Values on generators

(157951,202501,6401,72577)(157951,202501,6401,72577)(1,e(1316),e(3754),e(310))(-1,e\left(\frac{13}{16}\right),e\left(\frac{37}{54}\right),e\left(\frac{3}{10}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ259200(839,a) \chi_{ 259200 }(839, a) 1111e(19216)e\left(\frac{19}{216}\right)e(5832160)e\left(\frac{583}{2160}\right)e(7972160)e\left(\frac{797}{2160}\right)e(47180)e\left(\frac{47}{180}\right)e(343720)e\left(\frac{343}{720}\right)e(7691080)e\left(\frac{769}{1080}\right)e(19212160)e\left(\frac{1921}{2160}\right)e(14135)e\left(\frac{14}{135}\right)e(569720)e\left(\frac{569}{720}\right)e(9611080)e\left(\frac{961}{1080}\right)
sage: chi.jacobi_sum(n)
 
χ259200(839,a)   \chi_{ 259200 }(839,a) \; at   a=\;a = e.g. 2