from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(259200, base_ring=CyclotomicField(2160))
M = H._module
chi = DirichletCharacter(H, M([1080,1755,1480,648]))
pari: [g,chi] = znchar(Mod(839,259200))
χ259200(119,⋅)
χ259200(839,⋅)
χ259200(1319,⋅)
χ259200(1559,⋅)
χ259200(2039,⋅)
χ259200(2279,⋅)
χ259200(2759,⋅)
χ259200(3479,⋅)
χ259200(3719,⋅)
χ259200(4439,⋅)
χ259200(4919,⋅)
χ259200(5159,⋅)
χ259200(5639,⋅)
χ259200(5879,⋅)
χ259200(6359,⋅)
χ259200(7079,⋅)
χ259200(7319,⋅)
χ259200(8039,⋅)
χ259200(8519,⋅)
χ259200(8759,⋅)
χ259200(9239,⋅)
χ259200(9479,⋅)
χ259200(9959,⋅)
χ259200(10679,⋅)
χ259200(10919,⋅)
χ259200(11639,⋅)
χ259200(12119,⋅)
χ259200(12359,⋅)
χ259200(12839,⋅)
χ259200(13079,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(157951,202501,6401,72577) → (−1,e(1613),e(5437),e(103))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ259200(839,a) |
1 | 1 | e(21619) | e(2160583) | e(2160797) | e(18047) | e(720343) | e(1080769) | e(21601921) | e(13514) | e(720569) | e(1080961) |