from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(259200, base_ring=CyclotomicField(1440))
M = H._module
chi = DirichletCharacter(H, M([720,1035,1280,1296]))
pari: [g,chi] = znchar(Mod(19,259200))
χ259200(19,⋅)
χ259200(739,⋅)
χ259200(1819,⋅)
χ259200(2179,⋅)
χ259200(3259,⋅)
χ259200(3979,⋅)
χ259200(4339,⋅)
χ259200(5059,⋅)
χ259200(5419,⋅)
χ259200(6139,⋅)
χ259200(7219,⋅)
χ259200(7579,⋅)
χ259200(8659,⋅)
χ259200(9379,⋅)
χ259200(9739,⋅)
χ259200(10459,⋅)
χ259200(10819,⋅)
χ259200(11539,⋅)
χ259200(12619,⋅)
χ259200(12979,⋅)
χ259200(14059,⋅)
χ259200(14779,⋅)
χ259200(15139,⋅)
χ259200(15859,⋅)
χ259200(16219,⋅)
χ259200(16939,⋅)
χ259200(18019,⋅)
χ259200(18379,⋅)
χ259200(19459,⋅)
χ259200(20179,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(157951,202501,6401,72577) → (−1,e(3223),e(98),e(109))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ259200(19,a) |
−1 | 1 | e(14459) | e(1440791) | e(14401429) | e(12019) | e(480431) | e(720173) | e(1440137) | e(18041) | e(480193) | e(720197) |