Properties

Label 259200.20179
Modulus 259200259200
Conductor 8640086400
Order 14401440
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(1440))
 
M = H._module
 
chi = DirichletCharacter(H, M([720,315,640,144]))
 
pari: [g,chi] = znchar(Mod(20179,259200))
 

Basic properties

Modulus: 259200259200
Conductor: 8640086400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 14401440
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ86400(39379,)\chi_{86400}(39379,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.zv

χ259200(19,)\chi_{259200}(19,\cdot) χ259200(739,)\chi_{259200}(739,\cdot) χ259200(1819,)\chi_{259200}(1819,\cdot) χ259200(2179,)\chi_{259200}(2179,\cdot) χ259200(3259,)\chi_{259200}(3259,\cdot) χ259200(3979,)\chi_{259200}(3979,\cdot) χ259200(4339,)\chi_{259200}(4339,\cdot) χ259200(5059,)\chi_{259200}(5059,\cdot) χ259200(5419,)\chi_{259200}(5419,\cdot) χ259200(6139,)\chi_{259200}(6139,\cdot) χ259200(7219,)\chi_{259200}(7219,\cdot) χ259200(7579,)\chi_{259200}(7579,\cdot) χ259200(8659,)\chi_{259200}(8659,\cdot) χ259200(9379,)\chi_{259200}(9379,\cdot) χ259200(9739,)\chi_{259200}(9739,\cdot) χ259200(10459,)\chi_{259200}(10459,\cdot) χ259200(10819,)\chi_{259200}(10819,\cdot) χ259200(11539,)\chi_{259200}(11539,\cdot) χ259200(12619,)\chi_{259200}(12619,\cdot) χ259200(12979,)\chi_{259200}(12979,\cdot) χ259200(14059,)\chi_{259200}(14059,\cdot) χ259200(14779,)\chi_{259200}(14779,\cdot) χ259200(15139,)\chi_{259200}(15139,\cdot) χ259200(15859,)\chi_{259200}(15859,\cdot) χ259200(16219,)\chi_{259200}(16219,\cdot) χ259200(16939,)\chi_{259200}(16939,\cdot) χ259200(18019,)\chi_{259200}(18019,\cdot) χ259200(18379,)\chi_{259200}(18379,\cdot) χ259200(19459,)\chi_{259200}(19459,\cdot) χ259200(20179,)\chi_{259200}(20179,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1440)\Q(\zeta_{1440})
Fixed field: Number field defined by a degree 1440 polynomial (not computed)

Values on generators

(157951,202501,6401,72577)(157951,202501,6401,72577)(1,e(732),e(49),e(110))(-1,e\left(\frac{7}{32}\right),e\left(\frac{4}{9}\right),e\left(\frac{1}{10}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ259200(20179,a) \chi_{ 259200 }(20179, a) 1-111e(43144)e\left(\frac{43}{144}\right)e(6791440)e\left(\frac{679}{1440}\right)e(10611440)e\left(\frac{1061}{1440}\right)e(11120)e\left(\frac{11}{120}\right)e(319480)e\left(\frac{319}{480}\right)e(397720)e\left(\frac{397}{720}\right)e(7931440)e\left(\frac{793}{1440}\right)e(169180)e\left(\frac{169}{180}\right)e(17480)e\left(\frac{17}{480}\right)e(373720)e\left(\frac{373}{720}\right)
sage: chi.jacobi_sum(n)
 
χ259200(20179,a)   \chi_{ 259200 }(20179,a) \; at   a=\;a = e.g. 2