Properties

Label 259200.20179
Modulus $259200$
Conductor $86400$
Order $1440$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(1440))
 
M = H._module
 
chi = DirichletCharacter(H, M([720,315,640,144]))
 
pari: [g,chi] = znchar(Mod(20179,259200))
 

Basic properties

Modulus: \(259200\)
Conductor: \(86400\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1440\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{86400}(39379,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.zv

\(\chi_{259200}(19,\cdot)\) \(\chi_{259200}(739,\cdot)\) \(\chi_{259200}(1819,\cdot)\) \(\chi_{259200}(2179,\cdot)\) \(\chi_{259200}(3259,\cdot)\) \(\chi_{259200}(3979,\cdot)\) \(\chi_{259200}(4339,\cdot)\) \(\chi_{259200}(5059,\cdot)\) \(\chi_{259200}(5419,\cdot)\) \(\chi_{259200}(6139,\cdot)\) \(\chi_{259200}(7219,\cdot)\) \(\chi_{259200}(7579,\cdot)\) \(\chi_{259200}(8659,\cdot)\) \(\chi_{259200}(9379,\cdot)\) \(\chi_{259200}(9739,\cdot)\) \(\chi_{259200}(10459,\cdot)\) \(\chi_{259200}(10819,\cdot)\) \(\chi_{259200}(11539,\cdot)\) \(\chi_{259200}(12619,\cdot)\) \(\chi_{259200}(12979,\cdot)\) \(\chi_{259200}(14059,\cdot)\) \(\chi_{259200}(14779,\cdot)\) \(\chi_{259200}(15139,\cdot)\) \(\chi_{259200}(15859,\cdot)\) \(\chi_{259200}(16219,\cdot)\) \(\chi_{259200}(16939,\cdot)\) \(\chi_{259200}(18019,\cdot)\) \(\chi_{259200}(18379,\cdot)\) \(\chi_{259200}(19459,\cdot)\) \(\chi_{259200}(20179,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1440})$
Fixed field: Number field defined by a degree 1440 polynomial (not computed)

Values on generators

\((157951,202501,6401,72577)\) → \((-1,e\left(\frac{7}{32}\right),e\left(\frac{4}{9}\right),e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 259200 }(20179, a) \) \(-1\)\(1\)\(e\left(\frac{43}{144}\right)\)\(e\left(\frac{679}{1440}\right)\)\(e\left(\frac{1061}{1440}\right)\)\(e\left(\frac{11}{120}\right)\)\(e\left(\frac{319}{480}\right)\)\(e\left(\frac{397}{720}\right)\)\(e\left(\frac{793}{1440}\right)\)\(e\left(\frac{169}{180}\right)\)\(e\left(\frac{17}{480}\right)\)\(e\left(\frac{373}{720}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 259200 }(20179,a) \;\) at \(\;a = \) e.g. 2