Properties

Label 2600.121
Modulus 26002600
Conductor 325325
Order 3030
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,18,5]))
 
pari: [g,chi] = znchar(Mod(121,2600))
 

Basic properties

Modulus: 26002600
Conductor: 325325
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ325(121,)\chi_{325}(121,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2600.fd

χ2600(121,)\chi_{2600}(121,\cdot) χ2600(361,)\chi_{2600}(361,\cdot) χ2600(641,)\chi_{2600}(641,\cdot) χ2600(881,)\chi_{2600}(881,\cdot) χ2600(1161,)\chi_{2600}(1161,\cdot) χ2600(1681,)\chi_{2600}(1681,\cdot) χ2600(1921,)\chi_{2600}(1921,\cdot) χ2600(2441,)\chi_{2600}(2441,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(1951,1301,1977,1601)(1951,1301,1977,1601)(1,1,e(35),e(16))(1,1,e\left(\frac{3}{5}\right),e\left(\frac{1}{6}\right))

First values

aa 1-1113377991111171719192121232327272929
χ2600(121,a) \chi_{ 2600 }(121, a) 1111e(1315)e\left(\frac{13}{15}\right)e(56)e\left(\frac{5}{6}\right)e(1115)e\left(\frac{11}{15}\right)e(2330)e\left(\frac{23}{30}\right)e(215)e\left(\frac{2}{15}\right)e(1930)e\left(\frac{19}{30}\right)e(710)e\left(\frac{7}{10}\right)e(415)e\left(\frac{4}{15}\right)e(35)e\left(\frac{3}{5}\right)e(1315)e\left(\frac{13}{15}\right)
sage: chi.jacobi_sum(n)
 
χ2600(121,a)   \chi_{ 2600 }(121,a) \; at   a=\;a = e.g. 2