Properties

Label 2600.121
Modulus $2600$
Conductor $325$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,18,5]))
 
pari: [g,chi] = znchar(Mod(121,2600))
 

Basic properties

Modulus: \(2600\)
Conductor: \(325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(121,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2600.fd

\(\chi_{2600}(121,\cdot)\) \(\chi_{2600}(361,\cdot)\) \(\chi_{2600}(641,\cdot)\) \(\chi_{2600}(881,\cdot)\) \(\chi_{2600}(1161,\cdot)\) \(\chi_{2600}(1681,\cdot)\) \(\chi_{2600}(1921,\cdot)\) \(\chi_{2600}(2441,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1951,1301,1977,1601)\) → \((1,1,e\left(\frac{3}{5}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2600 }(121, a) \) \(1\)\(1\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{13}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2600 }(121,a) \;\) at \(\;a = \) e.g. 2