Properties

Label 2600.fd
Modulus $2600$
Conductor $325$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,18,5]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(121,2600))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2600\)
Conductor: \(325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 325.bg
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{2600}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{2600}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{2600}(641,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{2600}(881,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{2600}(1161,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{2600}(1681,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{2600}(1921,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{2600}(2441,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{15}\right)\)