Properties

Label 269.133
Modulus 269269
Conductor 269269
Order 134134
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(269, base_ring=CyclotomicField(134))
 
M = H._module
 
chi = DirichletCharacter(H, M([121]))
 
pari: [g,chi] = znchar(Mod(133,269))
 

Basic properties

Modulus: 269269
Conductor: 269269
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 134134
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 269.e

χ269(4,)\chi_{269}(4,\cdot) χ269(6,)\chi_{269}(6,\cdot) χ269(9,)\chi_{269}(9,\cdot) χ269(11,)\chi_{269}(11,\cdot) χ269(13,)\chi_{269}(13,\cdot) χ269(20,)\chi_{269}(20,\cdot) χ269(30,)\chi_{269}(30,\cdot) χ269(34,)\chi_{269}(34,\cdot) χ269(43,)\chi_{269}(43,\cdot) χ269(45,)\chi_{269}(45,\cdot) χ269(49,)\chi_{269}(49,\cdot) χ269(51,)\chi_{269}(51,\cdot) χ269(55,)\chi_{269}(55,\cdot) χ269(56,)\chi_{269}(56,\cdot) χ269(64,)\chi_{269}(64,\cdot) χ269(65,)\chi_{269}(65,\cdot) χ269(73,)\chi_{269}(73,\cdot) χ269(79,)\chi_{269}(79,\cdot) χ269(84,)\chi_{269}(84,\cdot) χ269(89,)\chi_{269}(89,\cdot) χ269(92,)\chi_{269}(92,\cdot) χ269(96,)\chi_{269}(96,\cdot) χ269(97,)\chi_{269}(97,\cdot) χ269(100,)\chi_{269}(100,\cdot) χ269(103,)\chi_{269}(103,\cdot) χ269(126,)\chi_{269}(126,\cdot) χ269(127,)\chi_{269}(127,\cdot) χ269(133,)\chi_{269}(133,\cdot) χ269(138,)\chi_{269}(138,\cdot) χ269(144,)\chi_{269}(144,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ67)\Q(\zeta_{67})
Fixed field: Number field defined by a degree 134 polynomial (not computed)

Values on generators

22e(121134)e\left(\frac{121}{134}\right)

First values

aa 1-111223344556677889910101111
χ269(133,a) \chi_{ 269 }(133, a) 1111e(121134)e\left(\frac{121}{134}\right)e(57134)e\left(\frac{57}{134}\right)e(5467)e\left(\frac{54}{67}\right)e(5567)e\left(\frac{55}{67}\right)e(2267)e\left(\frac{22}{67}\right)e(21134)e\left(\frac{21}{134}\right)e(95134)e\left(\frac{95}{134}\right)e(5767)e\left(\frac{57}{67}\right)e(97134)e\left(\frac{97}{134}\right)e(4667)e\left(\frac{46}{67}\right)
sage: chi.jacobi_sum(n)
 
χ269(133,a)   \chi_{ 269 }(133,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ269(133,))   \tau_{ a }( \chi_{ 269 }(133,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ269(133,),χ269(n,))   J(\chi_{ 269 }(133,·),\chi_{ 269 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ269(133,))  K(a,b,\chi_{ 269 }(133,·)) \; at   a,b=\; a,b = e.g. 1,2