from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(269, base_ring=CyclotomicField(134))
M = H._module
chi = DirichletCharacter(H, M([105]))
pari: [g,chi] = znchar(Mod(20,269))
χ269(4,⋅)
χ269(6,⋅)
χ269(9,⋅)
χ269(11,⋅)
χ269(13,⋅)
χ269(20,⋅)
χ269(30,⋅)
χ269(34,⋅)
χ269(43,⋅)
χ269(45,⋅)
χ269(49,⋅)
χ269(51,⋅)
χ269(55,⋅)
χ269(56,⋅)
χ269(64,⋅)
χ269(65,⋅)
χ269(73,⋅)
χ269(79,⋅)
χ269(84,⋅)
χ269(89,⋅)
χ269(92,⋅)
χ269(96,⋅)
χ269(97,⋅)
χ269(100,⋅)
χ269(103,⋅)
χ269(126,⋅)
χ269(127,⋅)
χ269(133,⋅)
χ269(138,⋅)
χ269(144,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(134105)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ269(20,a) |
1 | 1 | e(134105) | e(13455) | e(6738) | e(6766) | e(6713) | e(134119) | e(13447) | e(6755) | e(134103) | e(6715) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)