Properties

Label 2695.2316
Modulus $2695$
Conductor $539$
Order $70$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,63]))
 
pari: [g,chi] = znchar(Mod(2316,2695))
 

Basic properties

Modulus: \(2695\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(160,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2695.cs

\(\chi_{2695}(6,\cdot)\) \(\chi_{2695}(41,\cdot)\) \(\chi_{2695}(216,\cdot)\) \(\chi_{2695}(321,\cdot)\) \(\chi_{2695}(426,\cdot)\) \(\chi_{2695}(601,\cdot)\) \(\chi_{2695}(706,\cdot)\) \(\chi_{2695}(776,\cdot)\) \(\chi_{2695}(811,\cdot)\) \(\chi_{2695}(986,\cdot)\) \(\chi_{2695}(1091,\cdot)\) \(\chi_{2695}(1161,\cdot)\) \(\chi_{2695}(1196,\cdot)\) \(\chi_{2695}(1476,\cdot)\) \(\chi_{2695}(1546,\cdot)\) \(\chi_{2695}(1581,\cdot)\) \(\chi_{2695}(1756,\cdot)\) \(\chi_{2695}(1931,\cdot)\) \(\chi_{2695}(1966,\cdot)\) \(\chi_{2695}(2141,\cdot)\) \(\chi_{2695}(2246,\cdot)\) \(\chi_{2695}(2316,\cdot)\) \(\chi_{2695}(2526,\cdot)\) \(\chi_{2695}(2631,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((2157,1816,981)\) → \((1,e\left(\frac{11}{14}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(12\)\(13\)\(16\)\(17\)
\( \chi_{ 2695 }(2316, a) \) \(1\)\(1\)\(e\left(\frac{23}{70}\right)\)\(e\left(\frac{69}{70}\right)\)\(e\left(\frac{23}{35}\right)\)\(e\left(\frac{11}{35}\right)\)\(e\left(\frac{69}{70}\right)\)\(e\left(\frac{34}{35}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{11}{35}\right)\)\(e\left(\frac{26}{35}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2695 }(2316,a) \;\) at \(\;a = \) e.g. 2