Properties

Label 2695.cs
Modulus $2695$
Conductor $539$
Order $70$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,45,63]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(6,2695))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2695\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 539.z
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(12\) \(13\) \(16\) \(17\)
\(\chi_{2695}(6,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{6}{35}\right)\)
\(\chi_{2695}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{22}{35}\right)\)
\(\chi_{2695}(216,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{18}{35}\right)\)
\(\chi_{2695}(321,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{24}{35}\right)\)
\(\chi_{2695}(426,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{2}{35}\right)\)
\(\chi_{2695}(601,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{33}{35}\right)\)
\(\chi_{2695}(706,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{4}{35}\right)\)
\(\chi_{2695}(776,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{1}{35}\right)\)
\(\chi_{2695}(811,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{17}{35}\right)\)
\(\chi_{2695}(986,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{13}{35}\right)\)
\(\chi_{2695}(1091,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{19}{35}\right)\)
\(\chi_{2695}(1161,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{16}{35}\right)\)
\(\chi_{2695}(1196,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{32}{35}\right)\)
\(\chi_{2695}(1476,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{34}{35}\right)\)
\(\chi_{2695}(1546,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{31}{35}\right)\)
\(\chi_{2695}(1581,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{12}{35}\right)\)
\(\chi_{2695}(1756,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{8}{35}\right)\)
\(\chi_{2695}(1931,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{11}{35}\right)\)
\(\chi_{2695}(1966,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{27}{35}\right)\)
\(\chi_{2695}(2141,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{23}{35}\right)\)
\(\chi_{2695}(2246,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{29}{35}\right)\)
\(\chi_{2695}(2316,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{26}{35}\right)\)
\(\chi_{2695}(2526,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{3}{35}\right)\)
\(\chi_{2695}(2631,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{9}{35}\right)\)