from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2695, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([0,45,63]))
chi.galois_orbit()
[g,chi] = znchar(Mod(6,2695))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2695\) | |
Conductor: | \(539\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(70\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 539.z | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{35})$ |
Fixed field: | Number field defined by a degree 70 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2695}(6,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{70}\right)\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{6}{35}\right)\) |
\(\chi_{2695}(41,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{22}{35}\right)\) |
\(\chi_{2695}(216,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{18}{35}\right)\) |
\(\chi_{2695}(321,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{70}\right)\) | \(e\left(\frac{61}{70}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{61}{70}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{24}{35}\right)\) |
\(\chi_{2695}(426,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{70}\right)\) | \(e\left(\frac{43}{70}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{43}{70}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{2}{35}\right)\) |
\(\chi_{2695}(601,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{70}\right)\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{22}{35}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{33}{35}\right)\) |
\(\chi_{2695}(706,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{70}\right)\) | \(e\left(\frac{51}{70}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{51}{70}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{4}{35}\right)\) |
\(\chi_{2695}(776,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{70}\right)\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{1}{35}\right)\) |
\(\chi_{2695}(811,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{70}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{22}{35}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{22}{35}\right)\) | \(e\left(\frac{17}{35}\right)\) |
\(\chi_{2695}(986,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{70}\right)\) | \(e\left(\frac{17}{70}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{17}{70}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{13}{35}\right)\) |
\(\chi_{2695}(1091,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{19}{35}\right)\) |
\(\chi_{2695}(1161,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{29}{70}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{29}{70}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{16}{35}\right)\) |
\(\chi_{2695}(1196,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{70}\right)\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{32}{35}\right)\) |
\(\chi_{2695}(1476,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{57}{70}\right)\) | \(e\left(\frac{31}{70}\right)\) | \(e\left(\frac{22}{35}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{31}{70}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{34}{35}\right)\) |
\(\chi_{2695}(1546,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{19}{70}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{19}{70}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{31}{35}\right)\) |
\(\chi_{2695}(1581,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{51}{70}\right)\) | \(e\left(\frac{13}{70}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{13}{70}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{12}{35}\right)\) |
\(\chi_{2695}(1756,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{67}{70}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{67}{70}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{8}{35}\right)\) |
\(\chi_{2695}(1931,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{70}\right)\) | \(e\left(\frac{9}{70}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{9}{70}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{11}{35}\right)\) |
\(\chi_{2695}(1966,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{3}{70}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{3}{70}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{27}{35}\right)\) |
\(\chi_{2695}(2141,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{70}\right)\) | \(e\left(\frac{57}{70}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{57}{70}\right)\) | \(e\left(\frac{22}{35}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{23}{35}\right)\) |
\(\chi_{2695}(2246,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{11}{70}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{11}{70}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{29}{35}\right)\) |
\(\chi_{2695}(2316,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{26}{35}\right)\) |
\(\chi_{2695}(2526,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{3}{35}\right)\) |
\(\chi_{2695}(2631,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{9}{35}\right)\) |