Properties

Label 2695.782
Modulus $2695$
Conductor $245$
Order $84$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,10,0]))
 
pari: [g,chi] = znchar(Mod(782,2695))
 

Basic properties

Modulus: \(2695\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{245}(47,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2695.da

\(\chi_{2695}(12,\cdot)\) \(\chi_{2695}(122,\cdot)\) \(\chi_{2695}(243,\cdot)\) \(\chi_{2695}(353,\cdot)\) \(\chi_{2695}(397,\cdot)\) \(\chi_{2695}(507,\cdot)\) \(\chi_{2695}(628,\cdot)\) \(\chi_{2695}(738,\cdot)\) \(\chi_{2695}(782,\cdot)\) \(\chi_{2695}(892,\cdot)\) \(\chi_{2695}(1013,\cdot)\) \(\chi_{2695}(1123,\cdot)\) \(\chi_{2695}(1167,\cdot)\) \(\chi_{2695}(1277,\cdot)\) \(\chi_{2695}(1398,\cdot)\) \(\chi_{2695}(1508,\cdot)\) \(\chi_{2695}(1552,\cdot)\) \(\chi_{2695}(1662,\cdot)\) \(\chi_{2695}(1937,\cdot)\) \(\chi_{2695}(2047,\cdot)\) \(\chi_{2695}(2168,\cdot)\) \(\chi_{2695}(2278,\cdot)\) \(\chi_{2695}(2553,\cdot)\) \(\chi_{2695}(2663,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((2157,1816,981)\) → \((i,e\left(\frac{5}{42}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(12\)\(13\)\(16\)\(17\)
\( \chi_{ 2695 }(782, a) \) \(1\)\(1\)\(e\left(\frac{29}{84}\right)\)\(e\left(\frac{73}{84}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{47}{84}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{19}{84}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2695 }(782,a) \;\) at \(\;a = \) e.g. 2