from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,40,3]))
pari: [g,chi] = znchar(Mod(127,2700))
Basic properties
Modulus: | \(2700\) | |
Conductor: | \(900\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{900}(727,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2700.cf
\(\chi_{2700}(127,\cdot)\) \(\chi_{2700}(523,\cdot)\) \(\chi_{2700}(667,\cdot)\) \(\chi_{2700}(847,\cdot)\) \(\chi_{2700}(883,\cdot)\) \(\chi_{2700}(1063,\cdot)\) \(\chi_{2700}(1387,\cdot)\) \(\chi_{2700}(1423,\cdot)\) \(\chi_{2700}(1603,\cdot)\) \(\chi_{2700}(1747,\cdot)\) \(\chi_{2700}(1927,\cdot)\) \(\chi_{2700}(1963,\cdot)\) \(\chi_{2700}(2287,\cdot)\) \(\chi_{2700}(2467,\cdot)\) \(\chi_{2700}(2503,\cdot)\) \(\chi_{2700}(2683,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((1351,1001,2377)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{20}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2700 }(127, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{8}{15}\right)\) |
sage: chi.jacobi_sum(n)