Properties

Label 2700.667
Modulus $2700$
Conductor $900$
Order $60$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,40,39]))
 
pari: [g,chi] = znchar(Mod(667,2700))
 

Basic properties

Modulus: \(2700\)
Conductor: \(900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{900}(367,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2700.cf

\(\chi_{2700}(127,\cdot)\) \(\chi_{2700}(523,\cdot)\) \(\chi_{2700}(667,\cdot)\) \(\chi_{2700}(847,\cdot)\) \(\chi_{2700}(883,\cdot)\) \(\chi_{2700}(1063,\cdot)\) \(\chi_{2700}(1387,\cdot)\) \(\chi_{2700}(1423,\cdot)\) \(\chi_{2700}(1603,\cdot)\) \(\chi_{2700}(1747,\cdot)\) \(\chi_{2700}(1927,\cdot)\) \(\chi_{2700}(1963,\cdot)\) \(\chi_{2700}(2287,\cdot)\) \(\chi_{2700}(2467,\cdot)\) \(\chi_{2700}(2503,\cdot)\) \(\chi_{2700}(2683,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1351,1001,2377)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{13}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2700 }(667, a) \) \(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{14}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2700 }(667,a) \;\) at \(\;a = \) e.g. 2