sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2704, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,22]))
pari:[g,chi] = znchar(Mod(633,2704))
χ2704(9,⋅)
χ2704(185,⋅)
χ2704(217,⋅)
χ2704(393,⋅)
χ2704(425,⋅)
χ2704(601,⋅)
χ2704(633,⋅)
χ2704(809,⋅)
χ2704(841,⋅)
χ2704(1017,⋅)
χ2704(1049,⋅)
χ2704(1225,⋅)
χ2704(1257,⋅)
χ2704(1433,⋅)
χ2704(1465,⋅)
χ2704(1641,⋅)
χ2704(1673,⋅)
χ2704(1849,⋅)
χ2704(2057,⋅)
χ2704(2089,⋅)
χ2704(2265,⋅)
χ2704(2297,⋅)
χ2704(2473,⋅)
χ2704(2505,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2367,677,1185) → (1,−1,e(3911))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ2704(633,a) |
1 | 1 | e(7837) | e(261) | e(397) | e(3937) | e(7843) | e(3920) | e(397) | e(65) | e(2617) | e(32) |
sage:chi.jacobi_sum(n)