Properties

Label 2704.633
Modulus $2704$
Conductor $1352$
Order $78$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,39,22]))
 
pari: [g,chi] = znchar(Mod(633,2704))
 

Basic properties

Modulus: \(2704\)
Conductor: \(1352\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(78\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1352}(1309,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2704.cl

\(\chi_{2704}(9,\cdot)\) \(\chi_{2704}(185,\cdot)\) \(\chi_{2704}(217,\cdot)\) \(\chi_{2704}(393,\cdot)\) \(\chi_{2704}(425,\cdot)\) \(\chi_{2704}(601,\cdot)\) \(\chi_{2704}(633,\cdot)\) \(\chi_{2704}(809,\cdot)\) \(\chi_{2704}(841,\cdot)\) \(\chi_{2704}(1017,\cdot)\) \(\chi_{2704}(1049,\cdot)\) \(\chi_{2704}(1225,\cdot)\) \(\chi_{2704}(1257,\cdot)\) \(\chi_{2704}(1433,\cdot)\) \(\chi_{2704}(1465,\cdot)\) \(\chi_{2704}(1641,\cdot)\) \(\chi_{2704}(1673,\cdot)\) \(\chi_{2704}(1849,\cdot)\) \(\chi_{2704}(2057,\cdot)\) \(\chi_{2704}(2089,\cdot)\) \(\chi_{2704}(2265,\cdot)\) \(\chi_{2704}(2297,\cdot)\) \(\chi_{2704}(2473,\cdot)\) \(\chi_{2704}(2505,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((2367,677,1185)\) → \((1,-1,e\left(\frac{11}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 2704 }(633, a) \) \(1\)\(1\)\(e\left(\frac{37}{78}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{37}{39}\right)\)\(e\left(\frac{43}{78}\right)\)\(e\left(\frac{20}{39}\right)\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{17}{26}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2704 }(633,a) \;\) at \(\;a = \) e.g. 2