Properties

Label 2704.cl
Modulus $2704$
Conductor $1352$
Order $78$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,39,46]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(9,2704))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2704\)
Conductor: \(1352\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(78\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1352.bn
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{2704}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(393,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(425,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(601,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(633,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(809,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(1017,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(1049,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(1225,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(1257,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(1433,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(1465,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(1641,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(1673,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(1849,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(2057,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(2089,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(2265,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(2297,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2704}(2473,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2704}(2505,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{2}{3}\right)\)