from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,60,49]))
pari: [g,chi] = znchar(Mod(2123,2793))
χ2793(2,⋅)
χ2793(32,⋅)
χ2793(53,⋅)
χ2793(200,⋅)
χ2793(212,⋅)
χ2793(401,⋅)
χ2793(431,⋅)
χ2793(452,⋅)
χ2793(527,⋅)
χ2793(599,⋅)
χ2793(611,⋅)
χ2793(800,⋅)
χ2793(830,⋅)
χ2793(926,⋅)
χ2793(1199,⋅)
χ2793(1229,⋅)
χ2793(1250,⋅)
χ2793(1325,⋅)
χ2793(1397,⋅)
χ2793(1409,⋅)
χ2793(1628,⋅)
χ2793(1649,⋅)
χ2793(1724,⋅)
χ2793(1796,⋅)
χ2793(1808,⋅)
χ2793(1997,⋅)
χ2793(2048,⋅)
χ2793(2123,⋅)
χ2793(2195,⋅)
χ2793(2207,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(2110),e(187))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(2123,a) |
1 | 1 | e(6317) | e(6334) | e(12667) | e(2117) | e(126101) | e(143) | e(12683) | e(635) | e(12637) | e(141) |