Properties

Label 2793.452
Modulus 27932793
Conductor 27932793
Order 126126
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,120,77]))
 
pari: [g,chi] = znchar(Mod(452,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.ex

χ2793(2,)\chi_{2793}(2,\cdot) χ2793(32,)\chi_{2793}(32,\cdot) χ2793(53,)\chi_{2793}(53,\cdot) χ2793(200,)\chi_{2793}(200,\cdot) χ2793(212,)\chi_{2793}(212,\cdot) χ2793(401,)\chi_{2793}(401,\cdot) χ2793(431,)\chi_{2793}(431,\cdot) χ2793(452,)\chi_{2793}(452,\cdot) χ2793(527,)\chi_{2793}(527,\cdot) χ2793(599,)\chi_{2793}(599,\cdot) χ2793(611,)\chi_{2793}(611,\cdot) χ2793(800,)\chi_{2793}(800,\cdot) χ2793(830,)\chi_{2793}(830,\cdot) χ2793(926,)\chi_{2793}(926,\cdot) χ2793(1199,)\chi_{2793}(1199,\cdot) χ2793(1229,)\chi_{2793}(1229,\cdot) χ2793(1250,)\chi_{2793}(1250,\cdot) χ2793(1325,)\chi_{2793}(1325,\cdot) χ2793(1397,)\chi_{2793}(1397,\cdot) χ2793(1409,)\chi_{2793}(1409,\cdot) χ2793(1628,)\chi_{2793}(1628,\cdot) χ2793(1649,)\chi_{2793}(1649,\cdot) χ2793(1724,)\chi_{2793}(1724,\cdot) χ2793(1796,)\chi_{2793}(1796,\cdot) χ2793(1808,)\chi_{2793}(1808,\cdot) χ2793(1997,)\chi_{2793}(1997,\cdot) χ2793(2048,)\chi_{2793}(2048,\cdot) χ2793(2123,)\chi_{2793}(2123,\cdot) χ2793(2195,)\chi_{2793}(2195,\cdot) χ2793(2207,)\chi_{2793}(2207,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(2021),e(1118))(-1,e\left(\frac{20}{21}\right),e\left(\frac{11}{18}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(452,a) \chi_{ 2793 }(452, a) 1111e(5563)e\left(\frac{55}{63}\right)e(4763)e\left(\frac{47}{63}\right)e(113126)e\left(\frac{113}{126}\right)e(1321)e\left(\frac{13}{21}\right)e(97126)e\left(\frac{97}{126}\right)e(1314)e\left(\frac{13}{14}\right)e(61126)e\left(\frac{61}{126}\right)e(3163)e\left(\frac{31}{63}\right)e(53126)e\left(\frac{53}{126}\right)e(914)e\left(\frac{9}{14}\right)
sage: chi.jacobi_sum(n)
 
χ2793(452,a)   \chi_{ 2793 }(452,a) \; at   a=\;a = e.g. 2