Properties

Label 2888.987
Modulus $2888$
Conductor $2888$
Order $38$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
 
M = H._module
 
chi = DirichletCharacter(H, M([19,19,35]))
 
pari: [g,chi] = znchar(Mod(987,2888))
 

Basic properties

Modulus: \(2888\)
Conductor: \(2888\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(38\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2888.bf

\(\chi_{2888}(75,\cdot)\) \(\chi_{2888}(227,\cdot)\) \(\chi_{2888}(379,\cdot)\) \(\chi_{2888}(531,\cdot)\) \(\chi_{2888}(683,\cdot)\) \(\chi_{2888}(835,\cdot)\) \(\chi_{2888}(987,\cdot)\) \(\chi_{2888}(1139,\cdot)\) \(\chi_{2888}(1291,\cdot)\) \(\chi_{2888}(1595,\cdot)\) \(\chi_{2888}(1747,\cdot)\) \(\chi_{2888}(1899,\cdot)\) \(\chi_{2888}(2051,\cdot)\) \(\chi_{2888}(2203,\cdot)\) \(\chi_{2888}(2355,\cdot)\) \(\chi_{2888}(2507,\cdot)\) \(\chi_{2888}(2659,\cdot)\) \(\chi_{2888}(2811,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: 38.38.321901219811890081790219546628722051791865953039568238015939027374467326085267423464178688376545784307644366848.1

Values on generators

\((2167,1445,2529)\) → \((-1,-1,e\left(\frac{35}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 2888 }(987, a) \) \(1\)\(1\)\(e\left(\frac{1}{38}\right)\)\(e\left(\frac{7}{38}\right)\)\(e\left(\frac{25}{38}\right)\)\(e\left(\frac{1}{19}\right)\)\(e\left(\frac{18}{19}\right)\)\(e\left(\frac{10}{19}\right)\)\(e\left(\frac{4}{19}\right)\)\(e\left(\frac{3}{19}\right)\)\(e\left(\frac{13}{19}\right)\)\(e\left(\frac{37}{38}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2888 }(987,a) \;\) at \(\;a = \) e.g. 2