from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
M = H._module
chi = DirichletCharacter(H, M([19,19,35]))
pari: [g,chi] = znchar(Mod(987,2888))
Basic properties
Modulus: | \(2888\) | |
Conductor: | \(2888\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(38\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2888.bf
\(\chi_{2888}(75,\cdot)\) \(\chi_{2888}(227,\cdot)\) \(\chi_{2888}(379,\cdot)\) \(\chi_{2888}(531,\cdot)\) \(\chi_{2888}(683,\cdot)\) \(\chi_{2888}(835,\cdot)\) \(\chi_{2888}(987,\cdot)\) \(\chi_{2888}(1139,\cdot)\) \(\chi_{2888}(1291,\cdot)\) \(\chi_{2888}(1595,\cdot)\) \(\chi_{2888}(1747,\cdot)\) \(\chi_{2888}(1899,\cdot)\) \(\chi_{2888}(2051,\cdot)\) \(\chi_{2888}(2203,\cdot)\) \(\chi_{2888}(2355,\cdot)\) \(\chi_{2888}(2507,\cdot)\) \(\chi_{2888}(2659,\cdot)\) \(\chi_{2888}(2811,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{19})\) |
Fixed field: | 38.38.321901219811890081790219546628722051791865953039568238015939027374467326085267423464178688376545784307644366848.1 |
Values on generators
\((2167,1445,2529)\) → \((-1,-1,e\left(\frac{35}{38}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 2888 }(987, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{38}\right)\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{25}{38}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{37}{38}\right)\) |
sage: chi.jacobi_sum(n)