Properties

Label 2888.bf
Modulus $2888$
Conductor $2888$
Order $38$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
 
M = H._module
 
chi = DirichletCharacter(H, M([19,19,29]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(75,2888))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2888\)
Conductor: \(2888\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(38\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: 38.38.321901219811890081790219546628722051791865953039568238015939027374467326085267423464178688376545784307644366848.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{2888}(75,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{35}{38}\right)\)
\(\chi_{2888}(227,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{29}{38}\right)\)
\(\chi_{2888}(379,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{23}{38}\right)\)
\(\chi_{2888}(531,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{17}{38}\right)\)
\(\chi_{2888}(683,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{11}{38}\right)\)
\(\chi_{2888}(835,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{5}{38}\right)\)
\(\chi_{2888}(987,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{37}{38}\right)\)
\(\chi_{2888}(1139,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{31}{38}\right)\)
\(\chi_{2888}(1291,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{25}{38}\right)\)
\(\chi_{2888}(1595,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{13}{38}\right)\)
\(\chi_{2888}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{7}{38}\right)\)
\(\chi_{2888}(1899,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{1}{38}\right)\)
\(\chi_{2888}(2051,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{33}{38}\right)\)
\(\chi_{2888}(2203,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{27}{38}\right)\)
\(\chi_{2888}(2355,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{21}{38}\right)\)
\(\chi_{2888}(2507,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{15}{38}\right)\)
\(\chi_{2888}(2659,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{9}{38}\right)\)
\(\chi_{2888}(2811,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{3}{38}\right)\)