from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
M = H._module
chi = DirichletCharacter(H, M([19,19,29]))
chi.galois_orbit()
[g,chi] = znchar(Mod(75,2888))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2888\) | |
Conductor: | \(2888\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(38\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{19})\) |
Fixed field: | 38.38.321901219811890081790219546628722051791865953039568238015939027374467326085267423464178688376545784307644366848.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2888}(75,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{38}\right)\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{37}{38}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{35}{38}\right)\) |
\(\chi_{2888}(227,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{38}\right)\) | \(e\left(\frac{25}{38}\right)\) | \(e\left(\frac{35}{38}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{29}{38}\right)\) |
\(\chi_{2888}(379,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{29}{38}\right)\) | \(e\left(\frac{33}{38}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{23}{38}\right)\) |
\(\chi_{2888}(531,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{33}{38}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{17}{38}\right)\) |
\(\chi_{2888}(683,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{27}{38}\right)\) | \(e\left(\frac{37}{38}\right)\) | \(e\left(\frac{29}{38}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{11}{38}\right)\) |
\(\chi_{2888}(835,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{33}{38}\right)\) | \(e\left(\frac{3}{38}\right)\) | \(e\left(\frac{27}{38}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{5}{38}\right)\) |
\(\chi_{2888}(987,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{38}\right)\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{25}{38}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{37}{38}\right)\) |
\(\chi_{2888}(1139,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{11}{38}\right)\) | \(e\left(\frac{23}{38}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{31}{38}\right)\) |
\(\chi_{2888}(1291,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{38}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{25}{38}\right)\) |
\(\chi_{2888}(1595,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{38}\right)\) | \(e\left(\frac{23}{38}\right)\) | \(e\left(\frac{17}{38}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{13}{38}\right)\) |
\(\chi_{2888}(1747,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{27}{38}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{7}{38}\right)\) |
\(\chi_{2888}(1899,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{38}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{13}{38}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{1}{38}\right)\) |
\(\chi_{2888}(2051,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{35}{38}\right)\) | \(e\left(\frac{11}{38}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{33}{38}\right)\) |
\(\chi_{2888}(2203,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{38}\right)\) | \(e\left(\frac{1}{38}\right)\) | \(e\left(\frac{9}{38}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{27}{38}\right)\) |
\(\chi_{2888}(2355,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{38}\right)\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{21}{38}\right)\) |
\(\chi_{2888}(2507,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{38}\right)\) | \(e\left(\frac{9}{38}\right)\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{15}{38}\right)\) |
\(\chi_{2888}(2659,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{38}\right)\) | \(e\left(\frac{13}{38}\right)\) | \(e\left(\frac{3}{38}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{9}{38}\right)\) |
\(\chi_{2888}(2811,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{38}\right)\) | \(e\left(\frac{17}{38}\right)\) | \(e\left(\frac{1}{38}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{3}{38}\right)\) |