Properties

Label 2888.be
Modulus $2888$
Conductor $2888$
Order $38$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,19,28]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(77,2888))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2888\)
Conductor: \(2888\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(38\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: Number field defined by a degree 38 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{2888}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{11}{19}\right)\)
\(\chi_{2888}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{14}{19}\right)\)
\(\chi_{2888}(381,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{17}{19}\right)\)
\(\chi_{2888}(533,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{1}{19}\right)\)
\(\chi_{2888}(685,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{4}{19}\right)\)
\(\chi_{2888}(837,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{2888}(989,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{10}{19}\right)\)
\(\chi_{2888}(1141,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{2888}(1293,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{2888}(1597,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{3}{19}\right)\)
\(\chi_{2888}(1749,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{2888}(1901,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{9}{19}\right)\)
\(\chi_{2888}(2053,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{2888}(2205,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{15}{19}\right)\)
\(\chi_{2888}(2357,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{2888}(2509,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{2888}(2661,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{5}{19}\right)\)
\(\chi_{2888}(2813,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{8}{19}\right)\)