Properties

Label 2888.1141
Modulus $2888$
Conductor $2888$
Order $38$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,19,2]))
 
pari: [g,chi] = znchar(Mod(1141,2888))
 

Basic properties

Modulus: \(2888\)
Conductor: \(2888\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(38\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2888.be

\(\chi_{2888}(77,\cdot)\) \(\chi_{2888}(229,\cdot)\) \(\chi_{2888}(381,\cdot)\) \(\chi_{2888}(533,\cdot)\) \(\chi_{2888}(685,\cdot)\) \(\chi_{2888}(837,\cdot)\) \(\chi_{2888}(989,\cdot)\) \(\chi_{2888}(1141,\cdot)\) \(\chi_{2888}(1293,\cdot)\) \(\chi_{2888}(1597,\cdot)\) \(\chi_{2888}(1749,\cdot)\) \(\chi_{2888}(1901,\cdot)\) \(\chi_{2888}(2053,\cdot)\) \(\chi_{2888}(2205,\cdot)\) \(\chi_{2888}(2357,\cdot)\) \(\chi_{2888}(2509,\cdot)\) \(\chi_{2888}(2661,\cdot)\) \(\chi_{2888}(2813,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: Number field defined by a degree 38 polynomial

Values on generators

\((2167,1445,2529)\) → \((1,-1,e\left(\frac{1}{19}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 2888 }(1141, a) \) \(1\)\(1\)\(e\left(\frac{31}{38}\right)\)\(e\left(\frac{27}{38}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{12}{19}\right)\)\(e\left(\frac{33}{38}\right)\)\(e\left(\frac{31}{38}\right)\)\(e\left(\frac{10}{19}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{27}{38}\right)\)\(e\left(\frac{13}{19}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2888 }(1141,a) \;\) at \(\;a = \) e.g. 2