from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
M = H._module
chi = DirichletCharacter(H, M([0,19,2]))
pari: [g,chi] = znchar(Mod(1141,2888))
Basic properties
Modulus: | \(2888\) | |
Conductor: | \(2888\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(38\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2888.be
\(\chi_{2888}(77,\cdot)\) \(\chi_{2888}(229,\cdot)\) \(\chi_{2888}(381,\cdot)\) \(\chi_{2888}(533,\cdot)\) \(\chi_{2888}(685,\cdot)\) \(\chi_{2888}(837,\cdot)\) \(\chi_{2888}(989,\cdot)\) \(\chi_{2888}(1141,\cdot)\) \(\chi_{2888}(1293,\cdot)\) \(\chi_{2888}(1597,\cdot)\) \(\chi_{2888}(1749,\cdot)\) \(\chi_{2888}(1901,\cdot)\) \(\chi_{2888}(2053,\cdot)\) \(\chi_{2888}(2205,\cdot)\) \(\chi_{2888}(2357,\cdot)\) \(\chi_{2888}(2509,\cdot)\) \(\chi_{2888}(2661,\cdot)\) \(\chi_{2888}(2813,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{19})\) |
Fixed field: | Number field defined by a degree 38 polynomial |
Values on generators
\((2167,1445,2529)\) → \((1,-1,e\left(\frac{1}{19}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 2888 }(1141, a) \) | \(1\) | \(1\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{27}{38}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{33}{38}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{27}{38}\right)\) | \(e\left(\frac{13}{19}\right)\) |
sage: chi.jacobi_sum(n)