sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2888, base_ring=CyclotomicField(38))
M = H._module
chi = DirichletCharacter(H, M([0,19,2]))
pari:[g,chi] = znchar(Mod(1141,2888))
Modulus: | 2888 | |
Conductor: | 2888 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 38 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2888(77,⋅)
χ2888(229,⋅)
χ2888(381,⋅)
χ2888(533,⋅)
χ2888(685,⋅)
χ2888(837,⋅)
χ2888(989,⋅)
χ2888(1141,⋅)
χ2888(1293,⋅)
χ2888(1597,⋅)
χ2888(1749,⋅)
χ2888(1901,⋅)
χ2888(2053,⋅)
χ2888(2205,⋅)
χ2888(2357,⋅)
χ2888(2509,⋅)
χ2888(2661,⋅)
χ2888(2813,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2167,1445,2529) → (1,−1,e(191))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ2888(1141,a) |
1 | 1 | e(3831) | e(3827) | e(1917) | e(1912) | e(3833) | e(3831) | e(1910) | e(1917) | e(3827) | e(1913) |
sage:chi.jacobi_sum(n)