Properties

Label 28900.1331
Modulus $28900$
Conductor $28900$
Order $1360$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(1360))
 
M = H._module
 
chi = DirichletCharacter(H, M([680,544,345]))
 
pari: [g,chi] = znchar(Mod(1331,28900))
 

Basic properties

Modulus: \(28900\)
Conductor: \(28900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1360\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.fj

\(\chi_{28900}(11,\cdot)\) \(\chi_{28900}(31,\cdot)\) \(\chi_{28900}(71,\cdot)\) \(\chi_{28900}(91,\cdot)\) \(\chi_{28900}(211,\cdot)\) \(\chi_{28900}(231,\cdot)\) \(\chi_{28900}(311,\cdot)\) \(\chi_{28900}(371,\cdot)\) \(\chi_{28900}(411,\cdot)\) \(\chi_{28900}(431,\cdot)\) \(\chi_{28900}(471,\cdot)\) \(\chi_{28900}(571,\cdot)\) \(\chi_{28900}(691,\cdot)\) \(\chi_{28900}(711,\cdot)\) \(\chi_{28900}(771,\cdot)\) \(\chi_{28900}(811,\cdot)\) \(\chi_{28900}(891,\cdot)\) \(\chi_{28900}(911,\cdot)\) \(\chi_{28900}(991,\cdot)\) \(\chi_{28900}(1031,\cdot)\) \(\chi_{28900}(1111,\cdot)\) \(\chi_{28900}(1331,\cdot)\) \(\chi_{28900}(1371,\cdot)\) \(\chi_{28900}(1391,\cdot)\) \(\chi_{28900}(1431,\cdot)\) \(\chi_{28900}(1491,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1360})$
Fixed field: Number field defined by a degree 1360 polynomial (not computed)

Values on generators

\((14451,24277,23701)\) → \((-1,e\left(\frac{2}{5}\right),e\left(\frac{69}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 28900 }(1331, a) \) \(1\)\(1\)\(e\left(\frac{753}{1360}\right)\)\(e\left(\frac{223}{272}\right)\)\(e\left(\frac{73}{680}\right)\)\(e\left(\frac{999}{1360}\right)\)\(e\left(\frac{109}{340}\right)\)\(e\left(\frac{171}{680}\right)\)\(e\left(\frac{127}{340}\right)\)\(e\left(\frac{639}{1360}\right)\)\(e\left(\frac{899}{1360}\right)\)\(e\left(\frac{693}{1360}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 28900 }(1331,a) \;\) at \(\;a = \) e.g. 2