from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28900, base_ring=CyclotomicField(1360))
M = H._module
chi = DirichletCharacter(H, M([680,816,1345]))
pari: [g,chi] = znchar(Mod(471,28900))
χ28900(11,⋅)
χ28900(31,⋅)
χ28900(71,⋅)
χ28900(91,⋅)
χ28900(211,⋅)
χ28900(231,⋅)
χ28900(311,⋅)
χ28900(371,⋅)
χ28900(411,⋅)
χ28900(431,⋅)
χ28900(471,⋅)
χ28900(571,⋅)
χ28900(691,⋅)
χ28900(711,⋅)
χ28900(771,⋅)
χ28900(811,⋅)
χ28900(891,⋅)
χ28900(911,⋅)
χ28900(991,⋅)
χ28900(1031,⋅)
χ28900(1111,⋅)
χ28900(1331,⋅)
χ28900(1371,⋅)
χ28900(1391,⋅)
χ28900(1431,⋅)
χ28900(1491,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(14451,24277,23701) → (−1,e(53),e(272269))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ28900(471,a) |
1 | 1 | e(1360937) | e(272215) | e(680257) | e(13601151) | e(34081) | e(68099) | e(340163) | e(1360871) | e(136091) | e(13601117) |