from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28900, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,0,3]))
pari: [g,chi] = znchar(Mod(24201,28900))
Basic properties
Modulus: | \(28900\) | |
Conductor: | \(17\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{17}(10,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 28900.bm
\(\chi_{28900}(7001,\cdot)\) \(\chi_{28900}(8801,\cdot)\) \(\chi_{28900}(9901,\cdot)\) \(\chi_{28900}(14201,\cdot)\) \(\chi_{28900}(19901,\cdot)\) \(\chi_{28900}(24201,\cdot)\) \(\chi_{28900}(25301,\cdot)\) \(\chi_{28900}(27101,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | Number field defined by a degree 16 polynomial |
Values on generators
\((14451,24277,23701)\) → \((1,1,e\left(\frac{3}{16}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 28900 }(24201, a) \) | \(-1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) |
sage: chi.jacobi_sum(n)