Properties

Label 28900.27101
Modulus 2890028900
Conductor 1717
Order 1616
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,1]))
 
pari: [g,chi] = znchar(Mod(27101,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 1717
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ17(3,)\chi_{17}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.bm

χ28900(7001,)\chi_{28900}(7001,\cdot) χ28900(8801,)\chi_{28900}(8801,\cdot) χ28900(9901,)\chi_{28900}(9901,\cdot) χ28900(14201,)\chi_{28900}(14201,\cdot) χ28900(19901,)\chi_{28900}(19901,\cdot) χ28900(24201,)\chi_{28900}(24201,\cdot) χ28900(25301,)\chi_{28900}(25301,\cdot) χ28900(27101,)\chi_{28900}(27101,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: Number field defined by a degree 16 polynomial

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,1,e(116))(1,1,e\left(\frac{1}{16}\right))

First values

aa 1-1113377991111131319192121232327272929
χ28900(27101,a) \chi_{ 28900 }(27101, a) 1-111e(116)e\left(\frac{1}{16}\right)e(1116)e\left(\frac{11}{16}\right)e(18)e\left(\frac{1}{8}\right)e(716)e\left(\frac{7}{16}\right)iie(78)e\left(\frac{7}{8}\right)i-ie(1516)e\left(\frac{15}{16}\right)e(316)e\left(\frac{3}{16}\right)e(1316)e\left(\frac{13}{16}\right)
sage: chi.jacobi_sum(n)
 
χ28900(27101,a)   \chi_{ 28900 }(27101,a) \; at   a=\;a = e.g. 2