Properties

Label 28900.637
Modulus $28900$
Conductor $7225$
Order $680$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,306,585]))
 
pari: [g,chi] = znchar(Mod(637,28900))
 

Basic properties

Modulus: \(28900\)
Conductor: \(7225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(680\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{7225}(637,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.fa

\(\chi_{28900}(53,\cdot)\) \(\chi_{28900}(77,\cdot)\) \(\chi_{28900}(253,\cdot)\) \(\chi_{28900}(297,\cdot)\) \(\chi_{28900}(417,\cdot)\) \(\chi_{28900}(637,\cdot)\) \(\chi_{28900}(933,\cdot)\) \(\chi_{28900}(1073,\cdot)\) \(\chi_{28900}(1097,\cdot)\) \(\chi_{28900}(1273,\cdot)\) \(\chi_{28900}(1317,\cdot)\) \(\chi_{28900}(1413,\cdot)\) \(\chi_{28900}(1437,\cdot)\) \(\chi_{28900}(1613,\cdot)\) \(\chi_{28900}(1753,\cdot)\) \(\chi_{28900}(1777,\cdot)\) \(\chi_{28900}(1953,\cdot)\) \(\chi_{28900}(1997,\cdot)\) \(\chi_{28900}(2117,\cdot)\) \(\chi_{28900}(2337,\cdot)\) \(\chi_{28900}(2433,\cdot)\) \(\chi_{28900}(2633,\cdot)\) \(\chi_{28900}(2677,\cdot)\) \(\chi_{28900}(2773,\cdot)\) \(\chi_{28900}(2797,\cdot)\) \(\chi_{28900}(2973,\cdot)\) \(\chi_{28900}(3017,\cdot)\) \(\chi_{28900}(3113,\cdot)\) \(\chi_{28900}(3137,\cdot)\) \(\chi_{28900}(3453,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{680})$
Fixed field: Number field defined by a degree 680 polynomial (not computed)

Values on generators

\((14451,24277,23701)\) → \((1,e\left(\frac{9}{20}\right),e\left(\frac{117}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 28900 }(637, a) \) \(-1\)\(1\)\(e\left(\frac{7}{680}\right)\)\(e\left(\frac{81}{136}\right)\)\(e\left(\frac{7}{340}\right)\)\(e\left(\frac{671}{680}\right)\)\(e\left(\frac{57}{340}\right)\)\(e\left(\frac{49}{340}\right)\)\(e\left(\frac{103}{170}\right)\)\(e\left(\frac{541}{680}\right)\)\(e\left(\frac{21}{680}\right)\)\(e\left(\frac{297}{680}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 28900 }(637,a) \;\) at \(\;a = \) e.g. 2