from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
M = H._module
chi = DirichletCharacter(H, M([0,306,585]))
pari: [g,chi] = znchar(Mod(637,28900))
χ28900(53,⋅)
χ28900(77,⋅)
χ28900(253,⋅)
χ28900(297,⋅)
χ28900(417,⋅)
χ28900(637,⋅)
χ28900(933,⋅)
χ28900(1073,⋅)
χ28900(1097,⋅)
χ28900(1273,⋅)
χ28900(1317,⋅)
χ28900(1413,⋅)
χ28900(1437,⋅)
χ28900(1613,⋅)
χ28900(1753,⋅)
χ28900(1777,⋅)
χ28900(1953,⋅)
χ28900(1997,⋅)
χ28900(2117,⋅)
χ28900(2337,⋅)
χ28900(2433,⋅)
χ28900(2633,⋅)
χ28900(2677,⋅)
χ28900(2773,⋅)
χ28900(2797,⋅)
χ28900(2973,⋅)
χ28900(3017,⋅)
χ28900(3113,⋅)
χ28900(3137,⋅)
χ28900(3453,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(14451,24277,23701) → (1,e(209),e(136117))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ28900(637,a) |
−1 | 1 | e(6807) | e(13681) | e(3407) | e(680671) | e(34057) | e(34049) | e(170103) | e(680541) | e(68021) | e(680297) |