Properties

Label 28900.77
Modulus 2890028900
Conductor 72257225
Order 680680
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,34,445]))
 
pari: [g,chi] = znchar(Mod(77,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 72257225
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 680680
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ7225(77,)\chi_{7225}(77,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.fa

χ28900(53,)\chi_{28900}(53,\cdot) χ28900(77,)\chi_{28900}(77,\cdot) χ28900(253,)\chi_{28900}(253,\cdot) χ28900(297,)\chi_{28900}(297,\cdot) χ28900(417,)\chi_{28900}(417,\cdot) χ28900(637,)\chi_{28900}(637,\cdot) χ28900(933,)\chi_{28900}(933,\cdot) χ28900(1073,)\chi_{28900}(1073,\cdot) χ28900(1097,)\chi_{28900}(1097,\cdot) χ28900(1273,)\chi_{28900}(1273,\cdot) χ28900(1317,)\chi_{28900}(1317,\cdot) χ28900(1413,)\chi_{28900}(1413,\cdot) χ28900(1437,)\chi_{28900}(1437,\cdot) χ28900(1613,)\chi_{28900}(1613,\cdot) χ28900(1753,)\chi_{28900}(1753,\cdot) χ28900(1777,)\chi_{28900}(1777,\cdot) χ28900(1953,)\chi_{28900}(1953,\cdot) χ28900(1997,)\chi_{28900}(1997,\cdot) χ28900(2117,)\chi_{28900}(2117,\cdot) χ28900(2337,)\chi_{28900}(2337,\cdot) χ28900(2433,)\chi_{28900}(2433,\cdot) χ28900(2633,)\chi_{28900}(2633,\cdot) χ28900(2677,)\chi_{28900}(2677,\cdot) χ28900(2773,)\chi_{28900}(2773,\cdot) χ28900(2797,)\chi_{28900}(2797,\cdot) χ28900(2973,)\chi_{28900}(2973,\cdot) χ28900(3017,)\chi_{28900}(3017,\cdot) χ28900(3113,)\chi_{28900}(3113,\cdot) χ28900(3137,)\chi_{28900}(3137,\cdot) χ28900(3453,)\chi_{28900}(3453,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ680)\Q(\zeta_{680})
Fixed field: Number field defined by a degree 680 polynomial (not computed)

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,e(120),e(89136))(1,e\left(\frac{1}{20}\right),e\left(\frac{89}{136}\right))

First values

aa 1-1113377991111131319192121232327272929
χ28900(77,a) \chi_{ 28900 }(77, a) 1-111e(3680)e\left(\frac{3}{680}\right)e(93136)e\left(\frac{93}{136}\right)e(3340)e\left(\frac{3}{340}\right)e(579680)e\left(\frac{579}{680}\right)e(73340)e\left(\frac{73}{340}\right)e(21340)e\left(\frac{21}{340}\right)e(117170)e\left(\frac{117}{170}\right)e(329680)e\left(\frac{329}{680}\right)e(9680)e\left(\frac{9}{680}\right)e(613680)e\left(\frac{613}{680}\right)
sage: chi.jacobi_sum(n)
 
χ28900(77,a)   \chi_{ 28900 }(77,a) \; at   a=\;a = e.g. 2