from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
M = H._module
chi = DirichletCharacter(H, M([0,34,445]))
pari: [g,chi] = znchar(Mod(77,28900))
χ28900(53,⋅)
χ28900(77,⋅)
χ28900(253,⋅)
χ28900(297,⋅)
χ28900(417,⋅)
χ28900(637,⋅)
χ28900(933,⋅)
χ28900(1073,⋅)
χ28900(1097,⋅)
χ28900(1273,⋅)
χ28900(1317,⋅)
χ28900(1413,⋅)
χ28900(1437,⋅)
χ28900(1613,⋅)
χ28900(1753,⋅)
χ28900(1777,⋅)
χ28900(1953,⋅)
χ28900(1997,⋅)
χ28900(2117,⋅)
χ28900(2337,⋅)
χ28900(2433,⋅)
χ28900(2633,⋅)
χ28900(2677,⋅)
χ28900(2773,⋅)
χ28900(2797,⋅)
χ28900(2973,⋅)
χ28900(3017,⋅)
χ28900(3113,⋅)
χ28900(3137,⋅)
χ28900(3453,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(14451,24277,23701) → (1,e(201),e(13689))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ28900(77,a) |
−1 | 1 | e(6803) | e(13693) | e(3403) | e(680579) | e(34073) | e(34021) | e(170117) | e(680329) | e(6809) | e(680613) |