from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([55,44,60]))
pari: [g,chi] = znchar(Mod(725,2898))
Basic properties
Modulus: | \(2898\) | |
Conductor: | \(1449\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1449}(725,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2898.db
\(\chi_{2898}(95,\cdot)\) \(\chi_{2898}(317,\cdot)\) \(\chi_{2898}(347,\cdot)\) \(\chi_{2898}(443,\cdot)\) \(\chi_{2898}(473,\cdot)\) \(\chi_{2898}(725,\cdot)\) \(\chi_{2898}(821,\cdot)\) \(\chi_{2898}(947,\cdot)\) \(\chi_{2898}(1199,\cdot)\) \(\chi_{2898}(1451,\cdot)\) \(\chi_{2898}(1481,\cdot)\) \(\chi_{2898}(1577,\cdot)\) \(\chi_{2898}(1733,\cdot)\) \(\chi_{2898}(1829,\cdot)\) \(\chi_{2898}(2111,\cdot)\) \(\chi_{2898}(2237,\cdot)\) \(\chi_{2898}(2585,\cdot)\) \(\chi_{2898}(2615,\cdot)\) \(\chi_{2898}(2741,\cdot)\) \(\chi_{2898}(2837,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((1289,829,1891)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{10}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2898 }(725, a) \) | \(-1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{35}{66}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{5}{66}\right)\) |
sage: chi.jacobi_sum(n)